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RAMS-Related Research in 
My Group 
• Probabilistic Physics-of-Failure (PPoF)

– PoF has nearly 60-years of history in PoF (More Recently PPoF)
– Unit-Specific reliability assessment
– Empirically developed
– Simulation-based reliability

• Physics Laws as the Fundamental Sciences of Reliability
– 2nd Law of thermodynamics and entropy
– Statistical mechanics and Statistical thermodynamics
– Information entropy and Relative entropy

• Prognosis and Health Management (PHM)
– PPoF and Entropic models of degradation and failure
– Deep Learning, Sensor-Based Reliability Analysis

• Diagnostic and prognostic reliability: Data Fusion, Predictive Analytics, 
Deep Learning, Uncovering physics from data

• Combined Techniques: DNN, CNN, BN, PPOF,. .



PROGNOSIS AND HEALTH MANAGEMENT



Prognosis and Health 
Management (PHM)
• PHM has overcome limitations of traditional reliability analysis 
• PHM is a holistic approach for effective and efficient system 

health management
• A PHM framework in RAMS seeks to:

– Link failure mechanisms with lifecycle management
– Accurately predict the future behavior of a specific system
– Minimize the system’s downtime and profits with predictive 

maintenance decision making
• PHM generally produces two tangible outcomes:

– Diagnostics and Detection of incipient faults
– Predicting remaining useful life (RUL)



PHM (Cont.)

• PHM provides early detection and isolation of incipient faults
– Means to monitor and predict the progression of the fault
– Predict and assess options for autonomous maintenance schedule 

and asset health management

[From:DOI 10.1007/978-3-319-44742-1



PHM (Cont.)

• PHM generally include:
– Physics based models (PBM)

• e.g., Empirical models such as Paris’ Law, 2nd law of thermodynamics
– Data-driven analytics (DDA)

• Machine learning models
• Deep learning models

– Hybrid approaches
• Combine PBM and DDA



DATA ACQUISITION AND ANALYSIS 
Prognostics & Health Management:



Data Acquisition for PHM

• PHM frameworks rely on information extracted from the data 
collected through on-line and off-line monitoring systems:
– Data types include

• Physical variables, e.g., pressure and temperature
• Signal variables, e.g., acoustic emission (AE) and vibrations. 
• Categorical variables, e.g., operation states

• Low-cost sensors allow massive data collection:
– Massive data can be collected by monitoring the entire systems 

during their lifecycle
– Some of the data correlate well with the degradation processes



Data Acquisition for PHM 
(Cont.)
• Design for reliability processes can consider the sensor 

selection and placement
– Sensor selection for a reliable monitoring network
– Selection of proper mixture of sensing and measurement tools
– Optimize sensor layout that maximize probability of damage/fault 

detection while minimizing costs
• Collected data need cleaning and processing

– Outlier detection
– Redundant variables
– Feature engineering



Data Acquisition for PHM 
(Cont.)
• Collected data from systems present challenges

– High noise contamination level
• These uncertainties can propagate towards the diagnostics and 

prognostics analysis.
– Incomplete data due to high presence of NaN values and missing 

information
• Damaged or faulty sensors
• Unsynchronized sampling frequencies from different sensors 

– Not optimized Sensor layout
– Redundant information among sensors
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Scatter plot corresponding to all 46 HM layouts

Final Aggregate Layout

An Example of Optimum 
Sensor Placement for PHM
• 46 random realizations are 

aggregated to find the 
final sensor layout

• Triangles: 176 Acoustic 
emission sensor

• Pluses: 54 human 
Inspection Nodes

• On average , each 
aggregate layout has:

• 4 acoustic emission 
sensors

• 1 human inspection
• Final layout is obtained 

using K-means clustering 



DATA DRIVEN APPROACHES
Prognostics & Health Management:



Data-Driven Analytics for 
PHM Analysis
• DDA an alternative to PoF

– Do not require specific knowledge of the system
– Analytic-based models extract information directly from the data
– Trained models can be scaled and adapted to different systems

• DDA are black-box models
– Difficult to interpret their results
– Do not necessarily follow the laws of physics
– Require large amounts of data to train the models

• Main DDA applied to PHM these days
– Machine learning (ML)
– Deep learning (DL)



Machine Learning in PHM

• ML models are statistics-based analytics
– Maps a set of inputs X into a set of desired outputs Y
– Common analytics are support vector machines (SVM) and 

random forest (RF)
• ML models are extremely sensitive to their input values

– Raw data requires to be first processed to obtain useful features 
– Experts and prior knowledge of signal processing is usually 

required to manually select and extract meaningful features



Deep Learning in PHM
• Deep Learning (DL): 

– Deep neural networks are the main structure of DL models
– DL automatically process raw data to extract highly abstract and 

complex features. 
• Eliminates reliance on domain knowledge 
• Does not require feature engineering or manual feature selection
• Offers an end-to-end learning process from raw data

– DL models learn hierarchical representations of large-scale data 
automatically 

• Advantageous in high volume and multi-dimensional industrial data

• Big data collected from sensor networks and improvements in 
computational analysis have made DL popular in reliability



Data-driven PHM vs. Deep 
Learning PHM 

• ML models have no explicit 
information on the system 
under study
– Models are bound to the 

quality of the available data
– Interpreting its results can be 

challenging 
• DL models are more flexible 

than ML models
• DL has received most 

research attention recently

[From DOI 10.1016/j.measurement.2020.107929



[From DOI 10.1016/j.measurement.2020.107929

Recent researches have implemented DL models to generate and 
solve partial differential equations (PDE) from system data



Example of Deep Learning 
in Diagnostics
• Automated crack length estimation using CNNs

• Images correspond to experiments conducted at Center for Risk 
and Reliability

Original CNN prediction 

200 µm

Original CNN prediction 

200 µm



Information Theory Based 
Entropy

AE information entropy

Normalized 
damage
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Current Challenges

• Industrial data characteristics
– Noisy and incomplete data hinder the possibilities of DL 

applications to complex systems
• Model selection

– In growing number of DL algorithms to choose from. Which one is 
better? 

• Black-box tool
– DDA approaches are hard to interpret and not many PPoF models 

are available to implement hybrid models
• Real-time realization and benchmarking

– Most models are usually tested in benchmark dataset and are hard 
to adapt to real complex systems



Thank  you for your 
attention!

For more research in DL visit my website for
publicly available information

http://modarres.umd.edu

http://modarres.umd.edu/

