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New Era in Reliability 
Sciences and Engineering
• Started as an afterthought analysis

– In enduing years dismissed as a legitimate field of science and 
engineering

– Worked with small data
• Three advances transformed reliability into a legitimate 

science: 
– 1. Availability of inexpensive sensors and information systems
– 2. Ability to better described physics of damage, degradation, and 

failure time using empirical and theoretical sciences
– 3. Access to big data and PHM  techniques for diagnosing faults 

and incipient failures
• Today we can predict abnormalities, offer just-in-time 

remedies to avert failures, and making systems robust and 
resilient to failures



Seventy Years of 
Reliability Engineering

– Reliability Engineering Initiatives in 1950’s
• Weakest link
• Exponential life model
• Reliability Block Diagrams (RBDs)

– Beyond Exp. Dist. & Birth of System Reliability in 1960’s
• Birth of Physics of Failure (POF)
• Uses of more proper distributions (Weibull, etc.)
• Reliability growth
• Life testing
• Failure Mode and Effect Analysis (FMEA)

– Logic Models: Fault Tree Analysis in 1970’s
• Probabilistic Risk Assessment (PRA)
• Common Cause Failures (CCFs)
• Uncertainty analysis



Timeline (Cont.)
– Accelerated Life and Degradation Testing in 1980’s

• Environmental screening
– Revival of Empirically based Physics in 1990’s

• Probabilistic Physics-of-Failure (PPoF)
• Time varying accelerated tests (e.g., Step-Stress Test)
• Highly Accelerated Life Testing (HALT)

– Hybrid Reliability and Prognosis Models in 2000’s
• Powerful simulation tools (MCMC, Recursive Bayes and 

Particle Filtering)
• Integrated logic models and probabilistic models (e.g. BBN)
• Machine Learning (ML) tools for PHM



Timeline (Cont.)

– Emergence of Fundamental Sciences of Reliability, 2010’s
• Entropy as damage and as science of reliability  
• Semi-supervised and unsupervised deep learning reliability 

predictive
• Reliability in the age of autonomous and cyber-physical 

systems
• PoF-informed deep learning (DL) models
• Discovering physics from system performance data  

– Beyond 2020
• Reliability as fundamental discipline of engineering
• Reliability sciences  
• Hybrid PoF, ML, DL PHM in Design and Operations



Frontiers of Research in 
Reliability Engineering
• Probabilistic Physics-of-Failure (PPoF)

– More than 50-years of history in PoF (More Recently PPoF)
– Unit-Specific reliability assessment
– Simulation-based reliability

• Fundamental Sciences of Reliability Engineering
– 2nd Law of thermodynamics and entropy
– Statistical mechanics
– Information entropy

• Prognosis and health management (PHM)
– Hybrid System Reliability

• Combined Techniques: DNN, CNN, BN, POF,. . .
– Deep Learning, Sensor-Based Reliability Analysis

• Diagnostic and prognostic reliability: Data Fusion, Predictive Analytics, 
Deep Learning, Uncovering physics from data



PROGNOSIS AND HEALTH MANAGEMENT



Prognosis and Health 
Management (PHM)
• PHM has overcome limitations of traditional reliability analysis 
• PHM is a holistic approach towards an effective and efficient 

system health management
• A PHM framework in reliability engineering seeks to:

– Link failure mechanisms of a system with its lifecycle management
– Accurately predict the future behavior of a system
– Minimize the system’s downtime and maximize its usage and 

profits by supporting the maintenance decision making
• Prognosis allows proactive maintenance strategies, avoids reactive ones

• PHM generally produces two tangible outcomes:
– Detecting incipient failures
– Predicting remaining useful life (RUL)



PHM (Cont.)

• An effective PHM system framework provides early detection 
and isolation of the incipient faults
– Means to monitor and predict the progression of the fault
– Predict and assess options for autonomous maintenance schedule 

and asset health management

[From:DOI 10.1007/978-3-319-44742-1



PHM (Cont.)

• Most research efforts in PHM go to developing techniques for 
the diagnostics and prognostics of systems

• Depending on the system and the available information, these 
PHM steps can be addressed through:
– Physics based models (PBM)

• e.g., Paris’ Law, 2nd Law of Thermodynamics
– Data-driven approaches (DDA)

• Machine learning models
• Deep learning models

– Hybrid approaches
• Combine PBM and DDA



PHM (Cont.)

• Publications in PHM-reliability are related to four categories 

From [https://doi.org/10.1016/j.ymssp.2017.11.016]



DATA ACQUISITION AND ANALYSIS 
Prognostics & Health Management:



Data Acquisition for PHM

• PHM frameworks rely on information embedded in the data 
collected through a monitoring system:
– Data types will determine the capabilities of the framework

• Physical variables, e.g., pressure and temperature
• Signal variables, e.g., acoustic emission (AE) and vibrations. 
• Categorical variables, e.g., operation states

• Low cost sensors allow massive data collection:
– Massive data can be collected daily monitoring entire systems 

during their lifecycle
– Some of the data correlate well with the degradation processes



Data Acquisition for PHM 
(Cont.)
• Design for reliability processes can consider the sensor 

selection and placement
– Sensor selection for a reliable monitoring network
– Selection of proper mixture of sensing and measurement tools
– Optimize sensor layout that maximize probability of damage/fault 

detection while minimizing costs
• Collected data need cleaning and processing

– Outlier detection
– Redundant variables
– Vibration analysis
– Feature engineering



Data Acquisition for PHM 
(Cont.)
• Collected data from systems present challenges

– High noise contamination level
• These uncertainties can propagate towards the diagnostics and 

prognostics analysis.
– Incomplete data due to high presence of NaN values and missing 

information
• Damaged or faulty sensors
• Unsynchronized sampling frequencies from different sensors 

– Sensors layout is not optimized
– Redundant information among sensors
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Scatter plot corresponding to all 46 HM layouts

Final Aggregate Layout

An Example of Optimum 
Sensor Placement for PHM
• 46 random realizations are 

aggregated to find the 
final sensor layout

• Triangles: 176 Acoustic 
emission sensor

• Pluses: 54 human 
Inspection Nodes

• On average , each 
aggregate layout has:

• 4 acoustic emission 
sensors

• 1 human inspection
• Final layout is obtained 

using K-means clustering 



PHYSICS-OF-FAILURE MODELS
Prognostics & Health Management:



Physics-of-Failure Models
in PHM
• PoF is a regression-based mathematical model of 

failure, developed based on the empirical science of 
failure mechanisms such as fatigue, fracture, wear, 
and corrosion 

• PoF is of the form:
• Damage (or life)=𝒇(𝒔𝒕𝒓𝒆𝒔𝒔 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔, 𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒚, 
𝒆𝒏𝒗𝒊𝒓𝒏𝒎𝒆𝒏𝒕𝒂𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔, 𝒎𝒐𝒅𝒆𝒍 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔)

• When model error, parameter uncertainties in the 
mathematical PoF model are also estimated, the model 
is called Probabilistic PoF (PPoF)



PoF-Based Modeling in 
Reliability and PHM
Is used when:
• Facing long and costly life tests
• Identical units for testing is costly or unavailable

– Large systems like off-shore platforms, space 
vehicles 

– One-of-a-kind or highly expensive systems
– The products that must work properly at the first 

time
• Prototype during the design not available 
• Highly reliable products and systems analyzed
• Predicting the occurrence of rare or extreme events



DATA DRIVEN APPROACHES
Prognostics & Health Management:



Data-Driven Approaches 
for PHM Analysis
• DDA an alternative to PoF

– Do not require specific knowledge of the system
– Analytic-based models extract information directly from the data
– Trained models can be scaled and adapted to different systems

• DDA are black-box models
– Difficult to interpret their results
– Do not necessarily follow the laws of physics
– Require large amounts of data to train the models

• Main DDA applied to PHM these days
– Machine learning (ML)
– Deep learning (DL)



Machine Learning in PHM

• Machine learning models are statistics-based analytics
– They map a set of inputs X into a set of desired outputs Y
– Common algorithms are support vector machines (SVM) and 

random forest (RF)
– ML models can be used for fault diagnosis and/or prognostics

• ML models are extremely sensitive to their input values
– Raw data requires to be first processed to obtain useful features 
– Experts and prior knowledge of signal processing is usually 

required to manually select and extract meaningful features



Deep Learning in PHM
• Deep Learning (DL): 

– Deep neural networks are the main structure of DL models
– DL automatically process raw data to extract highly abstract and 

complex features. 
• Eliminates reliance on domain knowledge 
• Does not require feature engineering or manual feature selection
• Offers an end-to-end learning process from raw data

– DL models learn hierarchical representations of large-scale data 
automatically 

• Advantageous in high volume and multi-dimensional industrial data

• Big data collected from sensor networks and improvements in 
computational analysis have made DL popular in reliability



Data-driven PHM vs. Deep 
Learning PHM 

• ML models have no explicit 
information on the system 
under study
– Models are bound to the 

quality of the available data
– Interpreting its results can be 

challenging 
• DL models are more flexible 

than ML models
– Compact steps of the PHM 

framework
• DL received most research 

attention recently

[From DOI 10.1016/j.measurement.2020.107929



[From DOI 10.1016/j.measurement.2020.107929 (B) Publications

(a) Deep learning architectures in PHM 
2013 - 2019, 



Example of Deep Learning 
in Diagnostics
• Automated crack length estimation using CNNs

• Images correspond to experiments conducted at Center for Risk 
and Reliability

Original CNN prediction 

200 µm

Original CNN prediction 

200 µm



Hybrid Methods in PHM

• Combine strengths of PoF and DDA methods
– PoF allow for interpretation in Hybrid PHM models
– DDA can handle large amounts of data and easily adapt and scale

• Aim to address drawbacks
– A hybrid methods need less data to train and yield more accurate 

predictions
• Most common example is particle filtering

– Easy to apply in damage progressive models such as crack 
propagation and corrosion



Physics-Informed Deep 
Learning Models
• Recent research have implemented DL models to solve 

partial differential equations (PDE)
– This allows to embed physical model to DL models

• For example consider the Burgers Equation
– 𝑢! + 𝑢𝑢" −

#.#%
& 𝑢"" = 0, 𝑢 0, 𝑥 = −sin 𝜋x , 𝑢 𝑡, −1 = 𝑢 𝑡, 1 = 0

• Solve this equation for a given domain 𝑡, 𝑥 by considering 
𝑓 ≔ 𝑢! + NN 𝑢



Current Challenges in PHM

• Industrial data characteristics
– Noisy and incomplete data hinder the possibilities of DL 

applications to complex systems
• Model selection

– In growing number of DL algorithms to choose from. Which one is 
better? 

• Black-box tool
– DDA approaches are hard to interpret and not many PoF models 

are available to implement Hybrid models
• Real-time realization and benchmarking

– Most models are usually tested in benchmark dataset and are hard 
to adapt to real complex systems



Conclusions

• Reliability engineering started in the late 1940’s
• The academic settings dismissed it as a legitimate engineering 

topic of study, let alone as a discipline
• Recent advances in physics of failure, ML, DL and PHM have 

revised this notion and revolutionized reliability engineering 
• Reliability sciences developed through the laws of 

thermodynamics and information theory are and will be critical 
• Academic institutions now recognized reliability engineering as 

a thriving field of study and legitimate discipline worldwide



Thank  you for your 
attention!

For more details visit my website for more detail and
publicly available information

http://modarres.umd.edu
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