

Reliability Engineering: Today and Beyond

Keynote Talk at the 6th Annual Conference of the Institute for Quality and Reliability Tsinghua University People's Republic of China

by

Professor Mohammad Modarres Director, Center for Risk and Reliability

Department of Mechanical Engineering

THE A. JAMES CLARK SCHOOL of ENGINEERING

Outline

- A New Era in Reliability Engineering
- Reliability Engineering Timeline and Research Frontiers
- Prognostics and Health Management
- Physics of Failure
- Data-driven Approaches in PHM
- Hybrid Methods
- Conclusions

New Era in Reliability Sciences and Engineering

- Started as an afterthought analysis
 - In enduing years dismissed as a legitimate field of science and engineering
 - Worked with small data
- Three advances transformed reliability into a legitimate science:
 - Availability of inexpensive sensors and information systems
 - 2. Ability to better described physics of damage, degradation, and failure time using empirical and theoretical sciences
 - Access to big data and PHM techniques for diagnosing faults and incipient failures
- Today we can predict abnormalities, offer just-in-time remedies to avert failures, and making systems robust and resilient to failures

Seventy Years of Reliability Engineering

- Reliability Engineering Initiatives in 1950's
 - Weakest link
 - Exponential life model
 - Reliability Block Diagrams (RBDs)
- Beyond Exp. Dist. & Birth of System Reliability in 1960's
 - Birth of Physics of Failure (POF)
 - Uses of more proper distributions (Weibull, etc.)
 - Reliability growth
 - Life testing
 - Failure Mode and Effect Analysis (FMEA)
- Logic Models: Fault Tree Analysis in 1970's
 - Probabilistic Risk Assessment (PRA)
 - Common Cause Failures (CCFs)
 - Uncertainty analysis

Timeline (Cont.)

- Accelerated Life and Degradation Testing in 1980's
 - Environmental screening
- Revival of Empirically based Physics in 1990's
 - Probabilistic Physics-of-Failure (PPoF)
 - Time varying accelerated tests (e.g., Step-Stress Test)
 - Highly Accelerated Life Testing (HALT)
- Hybrid Reliability and Prognosis Models in 2000's
 - Powerful simulation tools (MCMC, Recursive Bayes and Particle Filtering)
 - Integrated logic models and probabilistic models (e.g. BBN)
 - Machine Learning (ML) tools for PHM

Timeline (Cont.)

- Emergence of Fundamental Sciences of Reliability, 2010's

- Entropy as damage and as science of reliability
- Semi-supervised and unsupervised deep learning reliability predictive
- Reliability in the age of autonomous and cyber-physical systems
- PoF-informed deep learning (DL) models
- Discovering physics from system performance data
- Beyond 2020
 - Reliability as fundamental discipline of engineering
 - Reliability sciences
 - Hybrid PoF, ML, DL PHM in Design and Operations

THE A. JAMES CLARK SCHOOL of ENGINEERING

Frontiers of Research in Reliability Engineering

- Probabilistic Physics-of-Failure (PPoF)
 - More than 50-years of history in PoF (More Recently PPoF)
 - Unit-Specific reliability assessment
 - Simulation-based reliability
- Fundamental Sciences of Reliability Engineering
 - 2nd Law of thermodynamics and entropy
 - Statistical mechanics
 - Information entropy
- Prognosis and health management (PHM)
 - Hybrid System Reliability
 - Combined Techniques: DNN, CNN, BN, POF,...
 - Deep Learning, Sensor-Based Reliability Analysis
 - Diagnostic and prognostic reliability: Data Fusion, Predictive Analytics, Deep Learning, Uncovering physics from data

THE A. JAMES CLARK SCHOOL of ENGINEERING

PROGNOSIS AND HEALTH MANAGEMENT

THE A. JAMES CLARK SCHOOL of ENGINEERING

Prognosis and Health Management (PHM)

- PHM has overcome limitations of traditional reliability analysis
- PHM is a holistic approach towards an effective and efficient system health management
- A PHM framework in reliability engineering seeks to:
 - Link failure mechanisms of a system with its lifecycle management
 - Accurately predict the future behavior of a system
 - Minimize the system's downtime and maximize its usage and profits by supporting the maintenance decision making
 - Prognosis allows proactive maintenance strategies, avoids reactive ones
- PHM generally produces two tangible outcomes:
 - Detecting incipient failures
 - Predicting remaining useful life (RUL)

THE A. JAMES CLARK SCHOOL of ENGINEERING

PHM (Cont.)

- An effective PHM system framework provides early detection and isolation of the incipient faults
 - Means to monitor and predict the progression of the fault
 - Predict and assess options for autonomous maintenance schedule and asset health management

[From:DOI 10.1007/978-3-319-44742-1

UNIVERSITY OF MARYLAND

PHM (Cont.)

UNIVERSITY OF MARYLAND

- Most research efforts in PHM go to developing techniques for the diagnostics and prognostics of systems
- Depending on the system and the available information, these PHM steps can be addressed through:
 - Physics based models (PBM)
 - e.g., Paris' Law, 2nd Law of Thermodynamics
 - Data-driven approaches (DDA)
 - Machine learning models
 - Deep learning models
 - Hybrid approaches
 - Combine PBM and DDA

PHM (Cont.)

• Publications in PHM-reliability are related to four categories

From [https://doi.org/10.1016/j.ymssp.2017.11.016]

THE A. JAMES CLARK SCHOOL of ENGINEERING

Prognostics & Health Management:

DATA ACQUISITION AND ANALYSIS

THE A. JAMES CLARK SCHOOL of ENGINEERING

Data Acquisition for PHM

- PHM frameworks rely on information embedded in the data collected through a monitoring system:
 - Data types will determine the capabilities of the framework
 - Physical variables, e.g., pressure and temperature
 - Signal variables, e.g., acoustic emission (AE) and vibrations.
 - Categorical variables, e.g., operation states
- Low cost sensors allow massive data collection:
 - Massive data can be collected daily monitoring entire systems during their lifecycle
 - Some of the data correlate well with the degradation processes

THE A. JAMES CLARK SCHOOL of ENGINEERING

Data Acquisition for PHM (Cont.)

- Design for reliability processes can consider the sensor selection and placement
 - Sensor selection for a reliable monitoring network
 - Selection of proper mixture of sensing and measurement tools
 - Optimize sensor layout that maximize probability of damage/fault detection while minimizing costs
- Collected data need cleaning and processing
 - Outlier detection
 - Redundant variables
 - Vibration analysis
 - Feature engineering

THE A. JAMES CLARK SCHOOL of ENGINEERING

Data Acquisition for PHM (Cont.)

- Collected data from systems present challenges
 - High noise contamination level
 - These uncertainties can propagate towards the diagnostics and prognostics analysis.
 - Incomplete data due to high presence of NaN values and missing information
 - Damaged or faulty sensors
 - Unsynchronized sampling frequencies from different sensors
 - Sensors layout is not optimized
 - Redundant information among sensors

THE A. JAMES CLARK SCHOOL of ENGINEERING

An Example of Optimum Sensor Placement for PHM

- 46 random realizations are aggregated to find the final sensor layout
 - Triangles: 176 Acoustic emission sensor
 - Pluses: 54 human Inspection Nodes
- On average , each aggregate layout has:
 - 4 acoustic emission sensors
 - 1 human inspection
- Final layout is obtained using K-means clustering

THE A. JAMES CLARK SCHOOL of ENGINEERING

Prognostics & Health Management:

PHYSICS-OF-FAILURE MODELS

THE A. JAMES CLARK SCHOOL of ENGINEERING

Physics-of-Failure Models in PHM

- PoF is a regression-based mathematical model of failure, developed based on the empirical science of failure mechanisms such as fatigue, fracture, wear, and corrosion
- PoF is of the form:
- Damage (or life)=f(stress variables, geometry, environmental variables, model parameters)
- When model error, parameter uncertainties in the mathematical PoF model are also estimated, the model is called Probabilistic PoF (PPoF)

PoF-Based Modeling in Reliability and PHM

Is used when:

- Facing long and costly life tests
- Identical units for testing is costly or unavailable
 - Large systems like off-shore platforms, space vehicles
 - One-of-a-kind or highly expensive systems
 - The products that must work properly at the first time
- Prototype during the design not available
- Highly reliable products and systems analyzed
- Predicting the occurrence of rare or extreme events

Prognostics & Health Management:

DATA DRIVEN APPROACHES

THE A. JAMES CLARK SCHOOL of ENGINEERING

Data-Driven Approaches for PHM Analysis

DDA an alternative to PoF

- Do not require specific knowledge of the system
- Analytic-based models extract information directly from the data
- Trained models can be scaled and adapted to different systems

DDA are black-box models

- Difficult to interpret their results
- Do not necessarily follow the laws of physics
- Require large amounts of data to train the models
- Main DDA applied to PHM these days
 - Machine learning (ML)
 - Deep learning (DL)

Machine Learning in PHM

- Machine learning models are statistics-based analytics
 - They map a set of inputs X into a set of desired outputs Y
 - Common algorithms are support vector machines (SVM) and random forest (RF)
 - ML models can be used for fault diagnosis and/or prognostics
- ML models are extremely sensitive to their input values
 - Raw data requires to be first processed to obtain useful features
 - Experts and prior knowledge of signal processing is usually required to manually select and extract meaningful features

Deep Learning in PHM

- Deep Learning (DL):
 - Deep neural networks are the main structure of DL models
 - DL automatically process raw data to extract highly abstract and complex features.
 - Eliminates reliance on domain knowledge
 - Does not require feature engineering or manual feature selection
 - Offers an end-to-end learning process from raw data
 - DL models learn hierarchical representations of large-scale data automatically
 - Advantageous in high volume and multi-dimensional industrial data
- Big data collected from sensor networks and improvements in computational analysis have made DL popular in reliability

THE A. JAMES CLARK SCHOOL of ENGINEERING

Data-driven PHM vs. Deep Learning PHM

- ML models have no explicit information on the system under study
 - Models are bound to the quality of the available data
 - Interpreting its results can be challenging
- DL models are more flexible
 than ML models
 - Compact steps of the PHM framework
- DL received most research attention recently

[From DOI 10.1016/j.measurement.2020.107929

THE A. JAMES CLARK SCHOOL of ENGINEERING

Example of Deep Learning (in Diagnostics

 Images correspond to experiments conducted at Center for Risk and Reliability

Original CNN prediction Original CNN prediction

THE A. JAMES CLARK SCHOOL of ENGINEERING

Hybrid Methods in PHM

- Combine strengths of PoF and DDA methods
 - PoF allow for interpretation in Hybrid PHM models
 - DDA can handle large amounts of data and easily adapt and scale
- Aim to address drawbacks
 - A hybrid methods need less data to train and yield more accurate predictions
- Most common example is particle filtering
 - Easy to apply in damage progressive models such as crack propagation and corrosion

Physics-Informed Deep Learning Models

- Recent research have implemented DL models to solve partial differential equations (PDE)
 - This allows to embed physical model to DL models
- For example consider the Burgers Equation

 $- u_t + uu_x - \frac{0.01}{\pi}u_{xx} = 0, u(0, x) = -\sin(\pi x), u(t, -1) = u(t, 1) = 0$

• Solve this equation for a given domain (t, x) by considering

Current Challenges in PHM

Industrial data characteristics

- Noisy and incomplete data hinder the possibilities of DL applications to complex systems
- Model selection
 - In growing number of DL algorithms to choose from. Which one is better?
- Black-box tool
 - DDA approaches are hard to interpret and not many PoF models are available to implement Hybrid models
- Real-time realization and benchmarking
 - Most models are usually tested in benchmark dataset and are hard to adapt to real complex systems

THE A. JAMES CLARK SCHOOL of ENGINEERING

Conclusions

- Reliability engineering started in the late 1940's
- The academic settings dismissed it as a legitimate engineering topic of study, let alone as a discipline
- Recent advances in physics of failure, ML, DL and PHM have revised this notion and revolutionized reliability engineering
- Reliability sciences developed through the laws of thermodynamics and information theory are and will be critical
- Academic institutions now recognized reliability engineering as a thriving field of study and legitimate discipline worldwide

For more details visit my website for more detail and publicly available information http://modarres.umd.edu

Thank you for your attention!

THE A. JAMES CLARK SCHOOL of ENGINEERING