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Outline of this Talk

– Overview
– Reliability engineering timeline
– Frontiers in reliability engineering research
– Probabilistic physics of failure
– Confluence of recent data analytics and reliability
– Entropy as the fundamental science of reliability
– Entropy-based physics of failure
– Conclusions



Timeline of Reliability 
Engineering

– Post WWII Initiatives in 1950’s
• Weakest link
• Exponential life model
• Reliability Block Diagrams (RBDs)

– Exponential Distribution Retreat in 1960’s
• Birth of Physics of Failure (POF)
• Uses of other distributions
• Reliability growth
• Life testing
• Failure Mode and Effect Analysis (FMEA)

– Deductive Models: Fault Tree Analysis in 1970’S
• Probabilistic Risk Assessment (PRA)
• Common Cause Failures (CCFs)
• Uncertainty analysis



Timeline (Cont.)
– Accelerated Life and Degradation Testing in1980’s

• Environmental screening tests

– Revival of Physics-of-Failure in 1990’s
• Probabilistic Physics-of-Failure (PPoF)
• Time varying accelerated tests (e.g., Step-Stress Test)
• Highly Accelerated Life Testing (HALT)

– Hybrid Reliability and Prognosis Models in 2000’s
• Powerful simulation tools (MCMC, Recursive Bayes and Particle Filtering)
• Integrated PoF and probabilistic models (e.g., BBN)
• Machine learning tools for Prognosis and Health Management (PHM)

– Exploring Fundamental Sciences of Reliability in 2010 
and Beyond 2020

• Entropy as damage and entropic-based reliability science  
• Supervised, semi-supervised and unsupervised reliability predictive analytics
• Reliability of intelligent, autonomous and cyber-physical systems
• PoF-informed deep learning 



• Probabilistic Physics-of-Failure (PPoF)
– Empirical models for Unit-Specific reliability assessment
– Simulation-based reliability

• Hybrid System Reliability
– Combined Techniques: NN, CNN, RNN, GAN, BBN, DBN, DFT, DET,

FEM and FDM.
• Deep Learning, Data-driven Sensor-based Reliability Analysis

– Diagnostic and prognostic reliability: Data Fusion, Predictive 
Analytics, Deep Learning

• Fundamental Sciences of Reliability Engineering
– 2nd Law of thermodynamics and entropy
– Statistical mechanics
– Information entropy and Kullback–Leibler Divergence (KLD)

Frontier Research Areas 
in Reliability Engineering



What is a Physics-of-Failure 
(PoF) Model?

• PoF is a regression-based mathematical model of 
failure, developed based on the empirical science 
of failure mechanisms such as fatigue, fracture, 
wear, and corrosion. 

• PoF is of the form:    𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑓𝑓 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 & 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

• When model error, parameter uncertainties in the 
mathematical PoF model are also estimated, the 
model is called Probabilistic PoF (PPoF)



Why PoF-Based Modeling in 
Reliability?

• To avoid repeating long and costly tests
– Reduce the development time
– Cost reduction toward cheaper products

• When impractical to build many identical units for testing
– Large systems like off-shore platforms, space vehicles 
– One-of-a-kind or highly expensive systems
– The products that must work properly at the first time

• When there is no prototype to test during the design
• When highly reliable products and systems that don’t fail

– The life time is long and possibly nonrepairable
– Internal control or safety related devices limit the stress

• Design for reliability optimization a dynamic prediction
• Predicting the occurrence of rare or extreme events



Strengths and 
Weaknesses of PoF

• Strengths: 
• Based on sound science and experimental data
• Offers a well-define path to modeling aging and 

degradation 
• Integrates well with modern machine learning 
• Provides unit-specific reliability predictions

• Weaknesses:
• More expensive to build
• Hard to specialize applications involving 

multiple, interactive failure mechanisms
• Extension of lab test data to field applications 

involving complex stresses is difficult 



PoF Development Steps

1. Specify component’s operating limits, pertinent 
characteristics and operating requirements.

2. Define operating environment and profile.
3. Use the profile to assess the applied static and 

dynamic mechanical, thermal, electrical and 
chemical stresses.

4. Identify hot spots exposed to the highest stress.
5. Identify failure mechanisms that become activated 

and their interactions. 
6. Determine materials characteristics and their 

vulnerabilities to the applicable failure mechanisms. 



PoF Steps (Cont.)
7. Propose a mathematical model that correlates loads 

(stresses) applied to amount or rate of degradation. 
8. Use generic data or accelerated reliability test data 

to estimate the PoF model parameters, uncertainties 
and model error.

9. Validate and revise the model considering adequacy 
of the PoF mathematical model fit to the data. 

10. Determine a level of degradation beyond which the 
component fails to operate or endure more damage.

11. Using the PoF model and the endurance limit, 
estimate the time- or cycle-to-failure, including 
uncertainties associated with such estimation.

12. Perform computer-based simulation to estimate 
expected life or remaining life of an item. 



• Data-driven failure (DDF) reliability models explore 
relationships between the failure time or degraded 
state of a component without knowledge of the 
underlying physical behaviors, such as applied failure 
mechanisms

• Strengths
• Relies on data specific to a system
• Could Rely on strong learning algorithms 

• Weakness
• Needs significant amount of data to predict (i.e., 

path to failure is unknow, a priori)

Data-Driven Failure Models vs. 
PoF Models 



• PoF-Informed hybrid models consider both 
the information and data from the components 
and the anticipated path to failure governed 
by the PoF

• Strengths
• Reduces the need for voluminous field and 

test data
• Substantially reduces reliability prediction error 

• Weakness
• Analytically involved and more expensive

Data-Driven Failure Models 
vs. PoF-Informed Hybrid 
Models



A Conceptual PPOF 
Fatigue Damage-Endurance Model
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Entropic-Based PPoF
in Reliability
•Describes damage resulted from failure mechanisms 
and time-to-failure within the confines of the laws of 
thermodynamics and information theory

• Sources of irreversible energy dissipation in failure 
mechanisms in terms of mechanical, thermal, chemical 
and acoustic are defined

• Entropy generation for each dissipation represent the 
aging and accumulation of damage

• Measures of entropy based on thermodynamic, 
information, and statistical mechanics theorems are 
used  



Why Entropy as a measure 
of damage in PoF?
Common definitions of damage are based on 
observable markers of damage which vary at 
different geometries and scales 
Macroscopic Markers of Damage (e.g. 

changes in elastic modulus, pit densities, 
weight loss)
Macroscopic Fatigues Markers include: crack 

length, reduction of modulus, . . .
 Issue: When markers of damage observed 

80%-90% of life has been expended



An Entropic Theory of 
Damage: A Fundamental Science 
of Reliability

• Failure mechanisms leading to degradation share a common 
feature at a deeper level: Dissipation of Energy

• Dissipation (or equivalently entropy generation)≅Damage

Failure occurs when the accumulated total entropy 
generated exceeds the entropic-endurance of the unit

• Entropic-endurance describes the capacity of the unit to 
withstand entropy

• Entropic-endurance of identical units is equal
• Entropic-endurance of different units is different
• Entropic-endurance to failure can be measured 

(experimentally) and involves stochastic variability

Rudolf Clausius
1822 –1888



Thermodynamics as a 
Science of Reliability
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 Entropy can model 
multiple competing 
degradation processes 
leading to damage

 Entropy is independent 
of the path to failure 
ending at similar total 
entropy at failure

 Entropy accounts for 
complex synergistic 
effects of interacting 
degradation processes

 Entropy is scale 
independent

Ludwig Boltzmann
1844-1906

Statistical Mechanics Entropy



An Entropic PPOF
Perspective 

• Assuming a constant 
entropic-endurance, 𝐷𝐷𝑓𝑓

• The reliability function
can be expressed as
𝑃𝑃𝑟𝑟 𝑇𝑇 ≤ 𝑡𝑡𝑐𝑐 = ∫0

𝑡𝑡𝑐𝑐 𝑔𝑔 𝑡𝑡 𝑑𝑑𝑑𝑑 = 1- ∫0
𝐷𝐷𝑓𝑓=1 𝑓𝑓(𝐷𝐷)𝑑𝑑𝑑𝑑

𝑅𝑅(𝑡𝑡𝑐𝑐) = 1 − 𝑃𝑃𝑟𝑟 𝑇𝑇 ≤ 𝑡𝑡𝑐𝑐 = ∫0
𝐷𝐷𝑓𝑓=1 𝑓𝑓(𝐷𝐷)𝑑𝑑𝑑𝑑

𝑇𝑇𝑐𝑐=Current operating time;  𝑔𝑔 𝑡𝑡 =distribution of time-to-failure, 𝑓𝑓(𝐷𝐷|𝑡𝑡)= distribution of damage at t

[1] Thermodynamics as a Fundamental Science of Reliability, A. Imanian, M. Modarres, Int. J. of Risk and Reliability, Vol.230(6), 
pp.598-608. DOI: 10.1177/1748006X16679578.(2016).



Entropic Approaches 
to Represent Damage

Dissipation Source

Plastic
Deformation

Thermal

Entropic
Approach

Acoustic 
Emission

Second Law of 
Thermodynamics

Information Theory 
(Shannon)

Statistical 
Mechanics (Crooks)

𝜎𝜎 =
1
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+ 1
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𝑇𝑇
𝛴𝛴𝑚𝑚=1
ℎ 𝑐𝑐𝑚𝑚𝑱𝑱𝑚𝑚(−𝛻𝛻𝛻𝛻)

𝑆𝑆 = −∑𝑝𝑝𝑖𝑖log𝑝𝑝𝑖𝑖

𝐷𝐷(𝑃𝑃𝐹𝐹| 𝑃𝑃𝑅𝑅 = �𝑃𝑃𝐹𝐹,𝑖𝑖 ln
𝑃𝑃𝐹𝐹,𝑖𝑖

𝑃𝑃𝑅𝑅,𝑖𝑖

Related 
Equation



Sources of Dissipation 
in Fatigue Process

Cyclic loading

Acoustic waveform

Plastic 
deformation Thermal dissipation

Ali Kahirdeh and M.M. Khonsari, Energy dissipation in the course of the fatigue degradation: Mathematical derivation and experimental 
quantification, International Journal of Solids and Structures 77 (2015): 74-85



[1] Anahita Imanian and Mohammad Modarres, A Thermodynamic Entropy Approach to Reliability Assessment with Application to Corrosion Fatigue, Entropy 17.10 (2015): 6995-7020
[2] M. Naderi et al., On the Thermodynamic Entropy of Fatigue Fracture, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 466.2114 

(2009): 1-16
[3] M. Naderi et al., Thermodynamic Analysis of Fatigue Failure in a Composite Laminate, Mechanics of Material 46 (2012): 113-122

[1]
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Thermodynamics Entropy 
in Fatigue Damage (Cont.)

Entropy to crack initiation Entropy to Fracture



Thermodynamic Entropy in 
Corrosion-Fatigue Modeling
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Anahita Imanian and Mohammad Modarres, A Thermodynamic Entropy Approach to Reliability Assessment with Application to Corrosion Fatigue, Entropy 
17.10 (2015): 6995-7020

Thermodynamics as a Fundamental Science of Reliability, A. Imanian, M. Modarres, Int. J. of Risk and Reliability, Vol.230(6), pp.598-608. DOI: 
10.1177/1748006X16679578.(2016).



Entropy of AE Information 

Acoustic emission signals (waveforms)
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• Cumulative AE information entropy better correlates with the 
measured damage in terms of changes in the elastic modulus

[6] Sauerbrunn, C. M., et al. "Damage Assessment Using Information Entropy of Individual Acoustic Emission Waveforms 
during Cyclic Fatigue Loading." Applied Sciences 7.6 (2017): 562

Entropy of AE Information 

AE information entropy

Normalized damage

D = Mi−𝑀𝑀𝑜𝑜
𝑀𝑀𝑓𝑓−𝑀𝑀𝑜𝑜

Aluminum
High Carbone SS



Entropy in Statistical 
Mechanics

[1] Gavin E Crooks and David A Sivak, Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics, Journal of 
Statistical Mechanics: Theory and Experiment, doi: 10.1088/1742-5468/2011/06/P06003

• Relative entropy (Kullback-Leibler Divergence)

• KLD equals the total entropy in a forward process or a reverse 
process.

• KLD is computed by repeating many similarly conditioned fatigue 
tests to measure forward / reverse work distributions

𝐷𝐷(𝑃𝑃𝐹𝐹| 𝑃𝑃𝑅𝑅 = ∑𝑃𝑃𝐹𝐹,𝑖𝑖 ln 𝑃𝑃𝐹𝐹,𝑖𝑖
𝑃𝑃𝑅𝑅,𝑖𝑖
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Relative entropy

Entropy in Statistical 
Mechanics (Cont.)
• Analysis Procedure

Multiple tests

Distributions of Forward 
and Backward
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Statistical Mechanics PoF

𝑀𝑀𝑜𝑜: the measured damage at time zero or the pristine state, 𝑀𝑀𝑓𝑓: the damage at the failure, 𝑀𝑀𝑖𝑖: the damage at a given instance

1000 µm

Normalized 
damage

D = Mi−𝑀𝑀𝑜𝑜
𝑀𝑀𝑓𝑓−𝑀𝑀𝑜𝑜



• Prognosis and health management (PHM) is the field where 
data analytics is applied 
– Cost effective and conditioned based pipeline integrity 

management 

• What is PHM?

All rights reserved. 
2019

[From:DOI 10.1007/978-3-319-44742-1

Data Analytics and Machine 
Learning in Pipeline 
Integrity Management



• PHM categories

All rights reserved. 
2019

Data-driven models
Physics of Failure-based models (PoF)
Hybrid models

Hybrid Model of 
the System

Condition 
Monitoring 

Data

Data-Driven ML 
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Experimental 
and Book 

Knowledge
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State 
Estimation

Σ

Degradation 
progression

RUL

Data  
Processing 
and Fusion

Model 
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Data Analytics and Machine 
Learning in Pipeline 
Integrity Management



Sensor Placement for PHM

• Example:
• 46 random realizations 

are aggregated to find 
the final sensor layout

• Triangles: 176 
Acoustic emission 
sensor

• Pluses: 54 human 
Inspection Nodes

• On average , each 
aggregate layout has:

• 4 acoustic emission 
sensors

• 1 human inspection
• Final layout is obtained 

using K-means 
clustering 
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Conclusions

• PoF and PPoF are the critical to assess long-life units
• Entropy as damage and aging provides a sound 

reliability science
• The entropic theory offers a more fundamental non-

empirical PPoF model of damage and better accounts 
for  interacting failure modes and mechanisms

• Physics-Informed deep-learning methods are critical 
to integrity management of aging structures

• Exciting developments in computational speed, AI, 
IoT and cheap sensors will revolutionize the reliability 
engineering as a discipline



Thank  you for your 
attention!

For more details visit my website for more detail and
publicly available information

http://modarres.umd.edu

http://modarres.umd.edu/
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