

Keynote Talk
Well Engineering Reliability Workshop
Petrobras R&D Center
Rio de Janeiro, Brazil
5 December 2019

Professor Mohammad Modarres

Director, Center for Risk and Reliability Department of Mechanical Engineering

Outline of this Talk

- Overview
- Reliability engineering timeline
- Frontiers in reliability engineering research
- Probabilistic physics of failure
- Confluence of recent data analytics and reliability
- Entropy as the fundamental science of reliability
- Entropy-based physics of failure
- Conclusions

Timeline of Reliability Engineering

- Post WWII Initiatives in 1950's
 - Weakest link
 - Exponential life model
 - Reliability Block Diagrams (RBDs)
- Exponential Distribution Retreat in 1960's
 - Birth of Physics of Failure (POF)
 - Uses of other distributions
 - Reliability growth
 - Life testing
 - Failure Mode and Effect Analysis (FMEA)
- Deductive Models: Fault Tree Analysis in 1970'S
 - Probabilistic Risk Assessment (PRA)
 - Common Cause Failures (CCFs)
 - Uncertainty analysis

Timeline (Cont.)

- Accelerated Life and Degradation Testing in 1980's
 - Environmental screening tests
- Revival of Physics-of-Failure in 1990's
 - Probabilistic Physics-of-Failure (PPoF)
 - Time varying accelerated tests (e.g., Step-Stress Test)
 - Highly Accelerated Life Testing (HALT)
- Hybrid Reliability and Prognosis Models in 2000's
 - Powerful simulation tools (MCMC, Recursive Bayes and Particle Filtering)
 - Integrated PoF and probabilistic models (e.g., BBN)
 - Machine learning tools for Prognosis and Health Management (PHM)
- Exploring Fundamental Sciences of Reliability in 2010 and Beyond 2020
 - Entropy as damage and entropic-based reliability science
 - Supervised, semi-supervised and unsupervised reliability predictive analytics
 - Reliability of intelligent, autonomous and cyber-physical systems
 - PoF-informed deep learning THE A. JAMES CLARK SCHOOL of ENGINEERING

Frontier Research Areas in Reliability Engineering

- Probabilistic Physics-of-Failure (PPoF)
 - Empirical models for Unit-Specific reliability assessment
 - Simulation-based reliability
- Hybrid System Reliability
 - Combined Techniques: NN, CNN, RNN, GAN, BBN, DBN, DFT, DET, FEM and FDM.
- Deep Learning, Data-driven Sensor-based Reliability Analysis
 - Diagnostic and prognostic reliability: Data Fusion, Predictive Analytics, Deep Learning
- Fundamental Sciences of Reliability Engineering
 - 2nd Law of thermodynamics and entropy
 - Statistical mechanics
 - Information entropy and Kullback–Leibler Divergence (KLD)

What is a Physics-of-Failure (PoF) Model?

- PoF is a regression-based mathematical model of failure, developed based on the empirical science of failure mechanisms such as fatigue, fracture, wear, and corrosion.
- PoF is of the form: Damage (of life) =
 f (stress & environmental variables, geometry,
 material properties, model parameters)
- When model error, parameter uncertainties in the mathematical PoF model are also estimated, the model is called Probabilistic PoF (PPoF)

- To avoid repeating long and costly tests
 - Reduce the development time
 - Cost reduction toward cheaper products
- When impractical to build many identical units for testing
 - Large systems like off-shore platforms, space vehicles
 - One-of-a-kind or highly expensive systems
 - The products that must work properly at the first time
- When there is no prototype to test during the design
- When highly reliable products and systems that don't fail
 - The life time is long and possibly nonrepairable
 - Internal control or safety related devices limit the stress
- Design for reliability optimization a dynamic prediction
- Predicting the occurrence of rare or extreme events

Strengths and Weaknesses of PoF

Strengths:

- Based on sound science and experimental data
- Offers a well-define path to modeling aging and degradation
- Integrates well with modern machine learning
- Provides unit-specific reliability predictions

Weaknesses:

- More expensive to build
- Hard to specialize applications involving multiple, interactive failure mechanisms
- Extension of lab test data to field applications involving complex stresses is difficult

PoF Development Steps

- 1. Specify component's operating limits, pertinent characteristics and operating requirements.
- 2. Define operating environment and profile.
- Use the profile to assess the applied static and dynamic mechanical, thermal, electrical and chemical stresses.
- 4. Identify hot spots exposed to the highest stress.
- 5. Identify failure mechanisms that become activated and their interactions.
- 6. Determine materials characteristics and their vulnerabilities to the applicable failure mechanisms.

PoF Steps (Cont.)

- 7. Propose a mathematical model that correlates loads (stresses) applied to amount or rate of degradation.
- 8. Use generic data or accelerated reliability test data to estimate the PoF model parameters, uncertainties and model error.
- 9. Validate and revise the model considering adequacy of the PoF mathematical model fit to the data.
- 10. Determine a level of degradation beyond which the component fails to operate or endure more damage.
- 11. Using the PoF model and the endurance limit, estimate the time- or cycle-to-failure, including uncertainties associated with such estimation.
- 12. Perform computer-based simulation to estimate expected life or remaining life of an item expected life or remaining life of an item on the standard of the

Data-Driven Failure Models vs. PoF Models

Strengths

- Relies on data specific to a system
- Could Rely on strong learning algorithms

Weakness

 Needs significant amount of data to predict (i.e., path to failure is unknow, a priori)

Data-Driven Failure Models vs. PoF-Informed Hybrid Models

Strengths

- Reduces the need for voluminous field and test data
- Substantially reduces reliability prediction error

Weakness

Analytically involved and more expensive

A Conceptual PPOF Fatigue Damage-Endurance Model TTF Distribution

Entropic-Based PPoF in Reliability

- Describes damage resulted from failure mechanisms and time-to-failure within the confines of the laws of thermodynamics and information theory
- Sources of irreversible energy dissipation in failure mechanisms in terms of mechanical, thermal, chemical and acoustic are defined
- Entropy generation for each dissipation represent the aging and accumulation of damage
- Measures of entropy based on thermodynamic, information, and statistical mechanics theorems are used

Why Entropy as a measure of damage in PoF?

Common definitions of damage are based on observable markers of damage which vary at different geometries and scales

- Macroscopic Markers of Damage (e.g. changes in elastic modulus, pit densities, weight loss)
- ➤ Macroscopic Fatigues Markers include: crack length, reduction of modulus, . . .
- Issue: When markers of damage observed 80%-90% of life has been expended

An Entropic Theory of Damage: A Fundamental Science of Reliability

feature at a deeper level: **Dissipation of Energy**

Dissipation (or equivalently entropy generation)≅Damage

1822 - 1888

Failure occurs when the accumulated total entropy generated exceeds the entropic-endurance of the unit

- Entropic-endurance describes the capacity of the unit to withstand entropy
- Entropic-endurance of identical units is equal
- Entropic-endurance of different units is different
- Entropic-endurance to failure can be measured (experimentally) and involves stochastic variability

Thermodynamics as a Science of Reliability Past Time-to-failure Historical Failure Data distribution Information Time-to-Failure ent Failure mechanisms Fretting Physical Damages Failure Cracks Corrosion Pres Damage > Endurance Fatigue Wear debris Wear Pit densities Time-to-Failure Entropy endurance level Dissipation process Heat Conduction \Rightarrow Mechanical losses Entropy Entropy to failure Diffusion losses Chemical reaction Time-to-Failure

- Entropy is independent of the path to failure ending at similar total entropy at failure
- Entropy accounts for complex synergistic effects of interacting degradation processes
- Entropy is scale independent

An Entropic PPOF Perspective

• Assuming a constant entropic-endurance, D_f

 The reliability function can be expressed as

$$P_r(T \le t_c) = \int_0^{t_c} g(t) dt$$

$$R(t_c) = 1 - P_r(T \le t_c) = \int_0^{D_f = 1} f(D)c$$

 T_c = Current operating time; g(t) = distribution of time-to-failure, f(D|t) = distribution of damage at t

[1] Thermodynamics as a Fundamental Science of Reliability, A. Imanian, M. Modarres, Int. J. of Risk and Reliability, Vol.230(6), pp.598-608. DOI: 10.1177/1748006X16679578.(2016).

Entropic Approaches to Represent Damage

Plastic Deformation

Thermal

Acoustic Emission Entropic Approach

Related Equation

Second Law of Thermodynamics

$$\sigma = \frac{1}{T^2} \boldsymbol{J}_q \cdot \nabla T - \Sigma_{k=1}^n \boldsymbol{J}_k \left(\nabla \frac{\mu_k}{T} \right) + \frac{1}{T} \boldsymbol{\tau} : \boldsymbol{\epsilon}_p$$
$$+ \frac{1}{T} \Sigma_{j=1}^r v_j A_j + \frac{1}{T} \Sigma_{m=1}^h c_m \boldsymbol{J}_m (-\nabla \psi)$$

Information Theory (Shannon)

$$S = -\sum p_i \log p_i$$

Statistical Mechanics (Crooks)

$$D(P_F||P_R) = \sum_{i} P_{F,i} \ln \frac{P_{F,i}}{P_{R,i}}$$

Sources of Dissipation in Fatigue Process

Ali Kahirdeh and M.M. Khonsari, Energy dissipation in the course of the fatigue degradation: Mathematical derivation and experimental quantification, International Journal of Solids and Structures 77 (2015): 74-85

THE A. JAMES CLARK SCHOOL of ENGINEERING

deformation

Thermodynamics Entropy in Fatigue Damage (Cont.)

$$\sigma = \frac{1}{T^2} J_q \cdot \nabla T + \frac{1}{T} \tau : \dot{\epsilon}_p$$

Product of thermodynamic forces and fluxes

^[1] Anahita Imanian and Mohammad Modarres, A Thermodynamic Entropy Approach to Reliability Assessment with Application to Corrosion Fatigue, Entropy 17.10 (2015): 6995-7020

^[2] M. Naderi et al., On the Thermodynamic Entropy of Fatigue Fracture, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 466.2114 (2009): 1-16

^[3] M. Naderi et al., Thermodynamic Analysis of Fatigue Failure in a Composite Laminate, Mechanics of Material 46 (2012): 113-122

Thermodynamic Entropy in Corrosion-Fatigue Modeling

Thermodynamics as a Fundamental Science of Reliability, A. Imanian, M. Modarres, Int. J. of Risk and Reliability, Vol.230(6), pp.598-608. DOI: 10.1177/1748006X16679578.(2016).

Anahita Imanian and Mohammad Modarres, A Thermodynamic Entropy Approach to Reliability Assessment with Application to Corrosion Fatigue, Entropy 17.10 (2015): 6995-7020

Entropy of AE Information

Entropy of AE Information

Cumulative AE information entropy better correlates with the measured damage in terms of changes in the elastic modulus

High Carbone SS

[6] Sauerbrunn, C. M., et al. "Damage Assessment Using Information Entropy of Individual Acoustic Emission Waveforms during Cyclic Fatigue Loading." Applied Sciences 7.6 (2017): 562

Entropy in Statistical Mechanics

$$D(P_F||P_R) = \sum_{i=1}^{n} P_{F,i} \ln \frac{P_{F,i}}{P_{R,i}} = \Delta S_F^{Total}$$
 [1]

- KLD equals the total entropy in a forward process or a reverse process.
- KLD is computed by repeating many similarly conditioned fatigue tests to measure forward / reverse work distributions

[1] Gavin E Crooks and David A Sivak, Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics, Journal of

Statistical Mechanics: Theory and Experiment, doi: 10.1088/1742-5468/2011/06/P06003

THE A. JAMES CLARK SCHOOL 0/ ENGINEERIN

Entropy in Statistical Mechanics (Cont.)

Analysis Procedure

Statistical Mechanics PoF

Normalized damage

$$D = \frac{M_i - M_o}{M_f - M_o}$$

 M_o : the measured damage at time zero or the pristine state, M_f : the damage at the failure, M_i : the damage at a given instance

Data Analytics and Machine Learning in Pipeline Integrity Management

Prognosis and health management (PHM) is the field where data analytics is applied

Cost effective and conditioned based pipeline integrity management

What is PHM?

[From:DOI 10.1007/978-3-319-44742-1

Data Analytics and Machine Learning in Pipeline Integrity Management

PHM categories

Data-driven models

Physics of Failure-based models (PoF)

Hybrid models

Sensor Placement for PHM

- 46 random realizations are aggregated to find the final sensor layout
 - Triangles: 176
 Acoustic emission sensor
 - Pluses: 54 human Inspection Nodes
- On average, each aggregate layout has:
 - 4 acoustic emission sensors
 - 1 human inspection
- Final layout is obtained using K-means clustering

Scatter plot corresponding to all 46 HM layouts

Final Aggregate Layout

Conclusions

- PoF and PPoF are the critical to assess long-life units
- Entropy as damage and aging provides a sound reliability science
- The entropic theory offers a more fundamental nonempirical PPoF model of damage and better accounts for interacting failure modes and mechanisms
- Physics-Informed deep-learning methods are critical to integrity management of aging structures
- Exciting developments in computational speed, AI, IoT and cheap sensors will revolutionize the reliability engineering as a discipline

http://modarres.umd.edu

Thank you for your attention!