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Topics Covered: Back to Basics!

• Definition of Probability and Uncertainty

• Interpretation of Uncertainty: Frequentist vs. Bayesian

• Uncertainty Representations 

• Examples in the Context of Probability of Detection (POD) 

and Sizing Flaws 

• Conclusion



3

Definition of Probability: Frequentist or Classical Viewpoint

• Frequentist Probability: the relative number of occurrences of 

an event in a large number of identical and independent trials 

(i.e., assumes iid datasets).

• Works well for an ensemble of repeated events, such as tossing 

a coin or failures of identical equipment, over many iid trials.

• What about probability of unrepeatable events? For example, 

existence of intelligent life on another planet; or, rare and 

unidentical events (e.g., SGTR) 

• Where do we find an ensemble of those planets or steam 

generators?
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Definition of Probability: Subjectivist or Bayesian Viewpoint

• Subjectivist Probability: the degree of belief (or certainty) of an 

individual in the truth of a proposition.

• Ideally rational individuals give the same subjective prior 

probabilities, considering the same information.

• Data and information (evidence) objectively combined into 

posterior probabilities to continuously suppress the subjectivity 

of the prior. 
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Confidence Intervals: Classical Uncertainty Interpretation in Estimation

• Frequentist confidence interval treats unknown parameters 𝜃 as 

fixed, and the ensemble (sample of the data) as random.

• Interprets the confidence interval as a statistic of the sample. 

• For example with 95% confidence a frequentist expects 95% of 

the confidence intervals of the iid redrawn samples of the data 

would contain the true mean value of 𝜃.

• Considering a set of detected flaws, the frequentist says that if 

for example you generate 99 more iid samples, 95 of those 

samples will contain the true mean flaw size, and 5 won’t.
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• Bayesian interval (probability bounds) treat parameters 𝜃 as random
and the data as fixed, and creates marginal distributions of 𝜃 given the 
dataset (or broadly the evidence).

• For example, the 95% Bayesian interval is interpreted as the 
probability (i.e., 95%) that the true value of 𝜃 falls within the interval, 
given the dataset (evidence).

• Considering the detected flaws and other related information, Rev. 
Bayes’ says: the likelihood that the interval contains the true model 
parameter is 95%.

• Numerically speaking: the credibility interval (bound) corresponds 
exactly to the classical confidence interval, if the prior probability is 
entirely "uninformative”, albeit with different interpretations.

Credibility Intervals: Bayesian Uncertainty Interpretation in Estimation
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• Let a 95% confidence interval (classical) for the mean flaw 

size given a random sample be (2.69, 6.04) mm:

oThis does not say that 95% of flaws in the sample fall 

between 2.69 and 6.04 mm! 

oRather we are 95% confident that the average flaw size is 

between 2.69 and 6.04 mm.

• Bayesian interpretation is more natural because we want to 

make a probability statement regarding the range of the true 

flaw sizes.

Confidence vs. Credibility Intervals
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Confidence vs. Credibility Intervals (Cont.)

• Confidence and credibility intervals in your uncertainty 

estimations are close, but mean different things.
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Types of Uncertainty (Bayesian Viewpoints)

• All uncertainties are epistemic (driven by lack of data 

and information)! 

• Some are irreducible despite observation of new 

information and data; we call them aleatory.

• Epistemic uncertainties are reducible with new 

information and data.
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Uncertainties in Probability of Detection Model

P
O

D

Flaw Length
0

1

95%

mean

5%

Epistemic Uncertainty
Estimated through

Bayesian OR Classical

Intervals

A
le

at
o
ry

 U
n
ce

rt
ai

n
ty

in
 f

o
rm

 o
f 

a 
cu

m
u
la

ti
v
e 

d
en

si
ty



11

Sources of Uncertainties in PFM
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𝜖

Uncertainty Estimation: MLE and Bayesian
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• Frequentist (classical) estimator: maximum 

likelihood (MLE or ML);

• Bayesian estimator: MLE and maximum a posteriori 

(MAP);

• In regression: is a set of 

observations of random variables, and is the 

vector of unknown parameters.

• Bayes’ theorem writes in this case: 

• Posterior likelihood prior (all these quantities 

are parameterized by )

• is the likelihood function and denotes how 

probable is the observed data set for various values 

of .  It is not a probability distribution over .

• The denominator:

ENRE655: Advanced Reliability Modeling

• Data: 𝐷 = 𝑎1, 𝑎2…𝑎𝑛
• Distribution Model: 𝑓(𝑎;𝒘)

• Prior: subjective distribution of parameters 𝒘
• Bayes’ inference: posterior distribution of 𝒘:

𝑝 𝒘 D =
𝐿 𝐷 𝒘 𝑝(𝒘)

𝑝(𝐷)
• Likelihood: 𝐿 𝐷 𝒘 describes how probable is the 

observed dataset (evidence) for various values of 𝒘
• Model prediction: 𝑓 𝑎 = 𝑓(𝑎;𝒘)𝑝׬…׬ 𝒘 D 𝑑𝒘
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Type I: Probabilistic model with uncertain parameter: for example f 𝑥|𝑤 to represent flaw 

size distribution, where 𝑤 is the vector of model parameters, which by itself is modeled as a 

multivariate distribution in Bayesian estimation to account for epistemic uncertainties. 

For example prior of 𝑤 : 𝑔 𝑤 ~𝑀𝑉𝑁𝑃𝐷𝐹 Μ𝑤, Σ𝑤

Type 2: 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟.

f 𝑥 𝑤𝑚𝑒𝑎𝑛 + 𝜀 0, 𝜎𝑥 . The error term is modeled by a distribution with a mean zero and a 

positive variance, 𝑔 𝜎𝑥 that represents the epistemic uncertainties..

Type 3: Probabilistic model with parameter uncertainties and uncertain model error. 

f 𝑥|𝑤 + 𝜀 0, 𝜎𝑥 . The prior multivariate distribution  𝑔 𝑤, 𝜎𝑥 represent uncertainties

The multivariate distributions are either estimated using MLE or Bayesian

Three Probabilistic Model Development Types
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POD: Definition of Data and Terms

• Flaw Sizing Classification

Flaw Size Description

Small 𝑎 < 2.54 mm

Medium 2.54 ≤ 𝑎 < 25.4 mm

Large 𝑎 ≥ 25.4 mm

89 Detected Flaws

17

21

51
A diagram of a test panel with two types/sizes of defects 

(Barrett, Smith, & Modarres 2018)
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Partial List of the Detection and Sizing Data

Test No. Measured (in) True (in) Detected

19 2.9 2.8 1

20 0.3 2.25 1

21 4.3 4.25 1

22 0.2 0.03 1

23 0 0.03 0

24 0 0.03 0

25 0.2 0.03 1

26 1 1 1

27 0 0.03 0

28 3.25 3.15 1

29 0.5 0.125 1

30 4 4 1

31 1.5 1.4 1

32 0.25 0.25 1

33 3 3 1
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Distribution of Measured Flaw Sizes
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Data Variability Flaw Sizing

Large Flaw Group:

𝑎𝑚 = 0.94𝑎𝑡 − 1.42

Medium Flaw Group:

𝑎𝑚 = 0.53𝑎𝑡 + 5.86

Small Flaw Group:

𝑎𝑚 = 2.92𝑎𝑡 + 2.54
Full Group:

𝑎𝑚 = 0.88𝑎𝑡 + 3.44
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Bayesian Estimation: Likelihood Definition for POD

• The likelihood for a POD is based on the Bernoulli

distribution and given as,

𝑙 =ෑ

𝑖=1

𝐷

𝑃𝑜𝐷 𝑎𝑖|𝑤 ෑ

𝑗=1

𝑁𝐷

1 − 𝑃𝑜𝐷 𝑎𝑗|𝑤

• where 𝐷 is the total detections and 𝑁𝐷 is the total non-

detections.
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POD Uncertainty: MLE vs. Bayesian Estimates

• Lognormal

Type I Model
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POD Uncertainty: MLE vs. Bayesian Estimates

• Lognormal

• Type III:

• Model & 

• Parameter
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Conclusion

• Mix-up in the definition of probability and interpretation of 

uncertainty in the frequentist vs. Bayesian estimation in 

engineering applications persists

• More work in this area is warranted, if PFM is to be extensively 

used in regulatory and safety improvement arenas

• PFM analysts should better communicate the meaning of their 

results to stakeholders for better acceptance and credibility
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Thank you


