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Topics Covered: Back to Basics!

...

Definition of Probability and Uncertainty
Interpretation of Uncertainty: Frequentist vs. Bayesian
Uncertainty Representations

Examples in the Context of Probability of Detection (POD)
and Sizing Flaws

Conclusion




Definition of Drobability' Frequentist or Classical Viewpoint

...

* Frequentist 3robablllty the relative number of occurrences of
an event in a large number of identical and independent trials
(1.e., assumes Iiid datasets).

* Works well for an ensemble of repeated events, such as tossing
a coin or failures of identical equipment, over many iid trials.

» What about probability of unrepeatable events? For example,
existence of intelligent life on another planet; or, rare and
unidentical events (e.g., SGTR)

* Where do we find an ensemble of those planets or steam
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Definition of Probablllty Subjectivist or Bayesian Viewpoint

...

 Subjectivist Probability: the degree of belief (or certainty) of an
Individual In the truth of a proposition.

* |deally rational individuals give the same subjective prior
probabilities, considering the same information.

 Data and information (evidence) objectively combined into
posterior probabilities to continuously suppress the subjectivity
of the prior.




Confidence Intervals: Classical Uncertainty Interpretation in Estimation

...

T e

* Frequentist confidence interval treats unknown parameters @ as
fixed, and the ensemble (sample of the data) as random.

* Interprets the confidence interval as a statistic of the sample.

* For example with 95% confidence a frequentist expects 95% of
the confidence intervals of the 11d redrawn samples of the data
would contain the true mean value of 6.

» Considering a set of detected flaws, the frequentist says that if
for example you generate 99 more 1id samples, 95 of those
samples will contain the true mean tlaw size, and 5 won’t.
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Credibility Intervals: Bayesian Uncertainty Interpretation in Estimation

T e I sl ...

 Bayesian interval (probability bounds) treat parameters @ as random
and the data as fixed, and creates marginal distributions of 8 given the
dataset (or broadly the evidence).

» For example, the 95% Bayesian interval Is interpreted as the
probability (i.e., 95%) that the true value of 8 falls within the interval,
given the dataset (evidence).

 Considering the detected flaws and other related information, Rev.
Bayes’ says: the likelihood that the interval contains the true model
parameter Is 95%.

* Numerically speaking: the credibility interval (bound) corresponds
exactly to the classical confidence interval, if the prior probability is
entirely "uninformative”, albeit with different interpretations. s
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Confidence vs. Credibility Intervals

T e ...

* Let a 95% confidence interval (classical) for the mean flaw
Size given a random sample be (2.69, 6.04) mm:

o This does not say that 95% of flaws In the sample fall
netween 2.69 and 6.04 mm!

o Rather we are 95% confident that the average flaw size Is
petween 2.69 and 6.04 mm.

 Bayesian interpretation is more natural because we want to
make a probability statement regarding the range of the true
flaw sizes. RSz,
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Confidence vs. Credibility Intervals (Cont.)

T e

« Confidence and credibility intervals in your uncertainty
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Types of Uncertainty (Bayesian Viewpoints)

 All uncertainties are epistemic (driven by lack of data
and information)!

« Some are Irreducible despite observation of new
Information and data; we call them aleatory.

 Epistemic uncertainties are reducible with new
Information and data.




Aleatory Uncertainty
in form of a cuTuIative density

POD

Uncertainties in Probability of Detection Model
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Epistemic Uncertainty
Estimated through
Bayesian OR Classical
Intervals

Flaw Length
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Sources of Uncertainties in PFM
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Sources of Uncertainty
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Uncertainty Estimation: MLE and Bayesian

...

T e

Data: D = {aq,a, ...a,}

Distribution Model: f (a; w) Mode! Likelihood
Prior: subjective distribution of parameters w L(Data|6) 4— MLE
Bayes’ inference: posterior distribution of w: Data {
p(WlD) = L(D|W)p(W) Prior { Bavesian | Posterior
p(D) ) — Inf)e’rence — (@|Data)
Likelihood: L(D|w) describes how probable isthe =777 7777~

observed dataset (evidence) for various values of w
Model prediction: f(a) = [ ... [ f(a; w)p(w|D)d w
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Three Probabilistic Model Development Types

T e

Type |: Probabilistic model with uncertain parameter: for example f(x|w) to represent flaw
size distribution, where w is the vector of model parameters, which by itself is modeled as a
multivariate distribution in Bayesian estimation to account for epistemic uncertainties.

For example prior of w : g(w)~MVNPDF (M, X:)

..

Type 2: Probabilistic model with constant parameters and uncertain model error.
f(x|Wyean) + €(0,0,) . The error term is modeled by a distribution with a mean zero and a
positive variance, g (o, ) that represents the epistemic uncertainties..

Type 3: Probabilistic model with parameter uncertainties and uncertain model error.
f(x|w) + £(0, o,). The prior multivariate distribution g(w, o,) represent uncertainties

The multivariate distributions are either estimated using MLE or Bayesian
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POD: Definition of Data and Terms

I ——
 Flaw Sizing Classification :
A ﬁ: i
&
Flaw Size Description 89 Detected Flaws Example
Defect #1
11
E ®  Example
Defect #2
Small a < 2.54 mm § =
(0]
Medium 2.54 < a <254 mm 21
) 304.8 mm
Large a = 254 mm _ _ _
A diagram of a test panel with two types/sizes of defects
(Barrett, Smith, & Modarres 2018)
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Part
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lal List of the Detection and Sizing Data

Test No.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Measured (in)
2.9
0.3
4.3
0.2

0
0
0.2
1
0
3.25
0.5

1.5
0.25

True (in)
2.8
2.25
4.25
0.03
0.03
0.03
0.03
1
0.03
3.15
0.125

1.4
0.25

..

Detected
1
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Dlstrlbutlon of Measured Flaw Sizes
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Full Group:

a,, = 0.88a; + 3.44
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Bayesian Estimation: Likelihood Definition for POD

« The likelihood for a POD i1s based on the Bernoulli
distribution and given as,

D ND
| = Dpomaum g[l ~ PoD(a;1W)]

« where D 1Is the total detections and ND is the total non-
detections.
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POD Uncertainty: MLE vs. Bayesian Estimates
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POD Uncertainty: MLE vs. Bayesian Estimates

Lognormal 1 1
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Conclusion

...

T e

* Mix-up In the definition of probability and interpretation of
uncertainty in the frequentist vs. Bayesian estimation in
engineering applications persists

* More work In this area Is warranted, if PFM is to be extensively
used In regulatory and safety improvement arenas

* PFM analysts should better communicate the meaning of their
results to stakeholders for better acceptance and credibility
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