

Reliability Engineering: A Brief Overview

Mohammad Modarres

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND

Reliability Engineering Overview

- Reliability engineering measures and improves resistance to failure over time, estimates expended life, and predicts time-to-failure
- What reliability engineers do?
 - Study ways to prevent failures
 - Robust Design
 - Monitor and correct degradation and damage
 - Develop and use models to assess damage, degradation, and aging
 - Predict the time-of-failure (e.g., MTTF, MTBF)
 - Assess complex system reliability
 - Develop prognosis and health assessment (PHM) methods

Evolution of Reliability Engineering

- lg
- Two Overlapping Themes for Modeling Life and Performance of Items Have Emerged:
 - 1. Data / Evidence Driven View:
 - Statistical
 - Probabilistic
 - 2. Physics Driven View:
 - Empirical: Physics of Failure
 - Physical Laws
- Examples of Areas of Applications
 - Design (Assuring Reliability, Testing, Safety, Human-Software-Machine, Warranty)
 - Operation (Repair, Maintenance, Risks, Obsolescence, Root Cause Evaluations)

Data and Physics Views

 Data View: Post WWII Initiatives due to unreliability of electronics and fatigue issues--asserts that historical failure data or reliability test data represent the truth

- Predicted reliability from historical data exists as the likelihood of no failure $R(t; \theta) = \Pr(Time - to - failure \ge desired \ life \ time)$
- Reliability of systems composed of multiple items: $R_{sys} = g(R_i); i = 1, ... N$
 - Logical connections of the components (fault trees, etc.)
 - Reliability block diagrams
- Common Assumptions
 - Maintenance and repair contribute to the renewal
 - Degradation can be measured by the hazard rate.

2. Physics View: Failures occur due to known underlying failure mechanisms:

- Accumulate damage until exceeds endurance (i.e., resistance to damage)
- Performance decline which until a minimum requirement reached
- Applied stresses (load) exceeds strength (capacity) to resist the applied stress

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND

Thank you for your attention!

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND