Thermodynamics of Damage: A Reliability Engineering Perspective

Mohammad Modarres

Presented at
Department of Materials Science and Engineering Seminar
UCLA, Los Angeles CA

February 17, 2017

Department of Mechanical Engineering University of Maryland, College Park, MD 20742, USA

Acknowledgments

The Team:

- 1. Dr. Anahita Imanian (Former PhD Student)
- 2. Dr. Mehdi Amiri (Postdoc)
- 3. Dr. Ali Kahirdeh (Postdoc)
- 4. Dr. Victor Ontiveros (Former PhD Student)
- 5. Mr. Huisung Yun (Current PhD candidate)
- 6. Ms. Christine Sauerbrunn (Former MS Student)
- 7. Prof. C. Wang (Corrosion/electrolysis consultant)
- 8. Prof. Mohammad Modarres (PI)

Funding and oversight: Office of Naval Research

Objectives

- Describe damage resulted from failure mechanisms within the irreversible thermodynamics framework
- Improve understanding of the coupled failure mechanisms
- Develop an example: entropic corrosion-fatigue damage model including confirmatory tests
- Define reliability in the context of the 2nd law of thermodynamics
- Extend the framework to statistical mechanics and information theory definitions of entropy
- Search for applications to Prognosis and Health Management (PHM) of structures

Motivation

- Common definitions of damage are based on observable markers of damage which vary at different geometries and scales
 - Macroscopic Markers of Damage (e.g. crack size, pit densities, weight loss)
 - Example: Macroscopic Fatigues Markers include: crack length, reduction of modulus, reduction of load carrying capacity
 - ➤ Issue: When markers of damage observed 80%-90% of life has been expended

Continuum damage mechanics [1]

Micro-scale

Meso-scale

^[1] J. Lemaitre, "A Course on Damage Mechanics", Springer, France, 1996.

Motivation (Cont.)

Total Strain Energy Expended in 40 P-3 Aircraft with vastly Different Loading Histories when the Miner's Cumulative Damage Reaches 0.5

[1] Anahita Imanian and Mohammad Modarres, A Thermodynamic Entropy Approach to Reliability Assessment with Application to Corrosion Fatigue, Entropy 17.10 (2015): 6995-7020 [2] M. Naderi et al., On the Thermodynamic Entropy of Fatigue Fracture, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 466.2114 (2009): 1-16

Thermodynamics Approach to Damage

Second Law of Thermodynamics: In an isolated system, entropy will always increase until it reaches a maximum value.

Second Law of Thermodynamics (Statistical Mechanics Version): In an isolated system, the system will always progress to a macrostate that corresponds to the maximum number of microstates.

All damages resulting from failure mechanisms share a common feature: Dissipation of Energy.

Dissipation: a fundamental determinant of irreversibility can be described well within the context of non-equilibrium thermodynamics.

Thermodynamics as the Science of Reliability

An Entropic Theory of Damage

Damage \equiv Entropy

An entropic theory follows^[1]:

Failure occurs when the accumulated total entropy generated exceeds the entropic-endurance of the unit

- Entropic-endurance describes the capacity of the unit to withstand entropy
- Entropic-endurance of identical units is equal
- Entropic-endurance of different units is different
- Entropic-endurance to failure can be measured (experimentally) and involves stochastic variability
- In this context we define Damage as: $D = \frac{\gamma_d \gamma_{d_0}}{\gamma_{d_E} \gamma_{d_0}}$

Entropy generation, γ_d , monotonically increases starting at time zero from a theoretical value of zero or practically some initial entropy, $\gamma_0,$ to an entropic-endurance value, γ_d

Total Entropy

• The variation of *total entropy*, dS, is in the form of: $dS = d^rS + d^dS$.

 $d^r S$ = exchange part of the entropy supplied to the system by its surroundings through transfer of matters and heat: $\frac{d^r S}{dt} = -\int_{-\infty}^{\infty} J_S \cdot n_S dA$

 d^dS = irreversible part of the entropy produced inside of the system: $\frac{d^dS}{dt} = \int^V \sigma dV$.

- Divergence theorem leads to: $\frac{ds}{dt} + \nabla \cdot J_s = \sigma$, where, s is the specific entropy per unit mass.
- Damage, D, according to our theory is expressed by the entropy generated: $D|t \sim \int_0^t [\sigma|X_i(u), J_i(u)]du$

 $J=entropy\ flux;\ \sigma=entropy\ generation/unit\ volume/unit\ time$

Total Entropy Generated

• Entropy generation σ involves a thermodynamic force, X_i , and an entropy flux, J_i as:

$$\sigma = \Sigma_{i,j} X_i J_i(X_j) ; \quad (i, j=1,...,n)$$

For near equilibrium condition interactions between multiple dissipation processes is captured by the Onsagar reciprocal relations define forces and fluxes. $J_i = \sum_j L_{ij} X_j$ For example for Fatigue (f) and Corrosion (c)

$$J_c = L_{cc}X_c + L_{fc}X_f$$
 and $J_f = L_{cf}X_c + L_{ff}X_f$
 $[L_{ij}]$ = Onsager matrix of phenomenological coefficients

Entropy generation of important dissipation phenomena leading to damage:

 J_n $(n=q,k,and\ m)=$ thermodynamic fluxes due to heat conduction, diffusion and external fields, T=temperature, $\mu_k=$ chemical potential, $v_i=$ chemical reaction rate, $\tau=$ stress tensor, $\epsilon_p=$ the plastic strain rate, $A_j=$ the chemical affinity or chemical reaction potential difference, $\psi=$ potential of the external field, and $c_m=$ coupling constant *, **

^{*}D. Kondepudi and I. Prigogine, "Modern Thermodynamics: From Heat Engines to Dissipative Structures," Wiley, England, 1998.

^{**} J. Lemaitre and J. L. Chaboche, "Mechanics of Solid Materials," 3rd edition; Cambridge University Press: Cambridge, UK, 2000.

Examples of Force and Flux of Dissipative Processes

$\sigma = \Sigma_{i,j} X_i J_i(X_j) ;$	(i, j=1,,n)
--	-------------

Primary mechanism	Thermodynamic force, X	Thermodynamic flow, J	Examples of materials damage process
Heat conduction	Temperature gradient, $\nabla(I/T)$	Heat flux, q	Fatigue, creep, wear
Plastic deformation of solids	Stress, σ/T	Plastic strain, $\dot{\boldsymbol{\varepsilon}}_p$	Fatigue, creep, wear
Chemical reaction	Reaction affinity, A_k/T	Reaction rate, v_k	Corrosion, wear
Mass diffusion	Chemical potential, $-\nabla(\mu_k/T)$	Diffusion flux, J_k	Wear, creep
Electrochemical reaction	Electrochemical potential, \tilde{A}/T	Current density, i_{corr}/z	Corrosion
rradiation	Particle flux density, A_r/T	Velocity of target atoms after collision, \dot{v}_r	Irradiation damage
Annihilation of attice sites	Creep driving force $(\tilde{\sigma} - \omega I)/T$	Creep deformation rate, R	Creep

Entropic-Based Damage from Corrosion-Fatigue (CF)

• Oxidation and reduction reactions of metallic electrode, *M*, under CF:

$$M \leftrightarrow M^{z_{M}^{+}} + z_{M}e^{-}$$
$$O + z_{O}e^{-} \leftrightarrow R$$

O =Certain oxidant in solution resulting in formation of the reduction product R.

- The entropy generation results from:
 - Entropy flow to the surrounding
 - Entropy generation from:
 - Corrosion reaction processes
 - Electrochemical processes
 - Mechanical losses
 - Diffusion losses
 - Hydrogen embrittlement losses

Entropy Generation in CF

• Contribution from corrosion activation over-potential, diffusion over-potential, corrosion reaction chemical potential, plastic and elastic deformation and hydrogen embrittlement to the rate of entropy generation [1]:

Electrochemical dissipations $\sigma = \frac{1}{T} \left(\boldsymbol{J}_{M,a} \boldsymbol{z}_{M} F \boldsymbol{E}_{M_{act,a}} + \boldsymbol{J}_{M,c} \boldsymbol{z}_{M} F \boldsymbol{E}_{M_{act,c}} + \boldsymbol{J}_{O,a} \boldsymbol{z}_{O} F \boldsymbol{E}_{O_{act,a}} + \boldsymbol{J}_{O,c} \boldsymbol{z}_{O} F \boldsymbol{E}_{O_{act,c}} \right)$ $+\frac{1}{T}\left(\boldsymbol{J}_{M,c}z_{M}FE_{M_{conc,c}}+z_{O}F\boldsymbol{J}_{O,c}E_{O_{conc,c}}\right)$ Diffusion dissipations $+\frac{1}{T}(J_{M,a}\alpha_{M}A_{M}+J_{M,c}(1-\alpha_{M})A_{M}+J_{O,a}\alpha_{O}A_{O}+J_{M,a}(1-\alpha_{O})A_{O})$ $+\frac{1}{T}\dot{\boldsymbol{\epsilon}}_{p}:\boldsymbol{\tau}+\frac{1}{T}Y\dot{\boldsymbol{D}}$ Chemical reaction dissipations Mechanical dissipations $+\sigma_H$ Hydrogen embrittlement dissipation

T = temperature, z_M =number of moles of electrons exchanged in the oxidation process, F =Farady number, $J_{M,a}$ and $J_{M,c}$ = irreversible anodic and cathodic activation currents for oxidation reaction, $J_{O,a}$ and $J_{O,c}$ =anodic and cathodic activation currents for reduction reaction, $E_{M_{act,a}}$ and $E_{M_{act,c}}$ =anodic and cathodic over-potentials for oxidation reaction, $E_{O_{act,c}}$ and $E_{O_{act,c}}$ =anodic and cathodic over-potentials for the cathodic oxidation and cathodic reduction reactions, α_M and α_O =charge transport coefficient for the oxidation and reduction reactions, A_M and A_O = chemical affinity for the oxidation and reductions, $\dot{\epsilon}_p$ =plastic deformation rate, τ =plastic stress, \dot{D} =dimensionless damage flux $\dot{\nu}$ the elastic energy, and σ_H =entropy generation due to hydrogen embrittlement.

Corrosion Fatigue (CF) Experimental Set up

- Fatigue tests of Al 7075-T651 in 3.5% wt. NaCl aqueous solution acidified with a 1 molar solution of HCl, with the pH of about 3.5, under axial load controlled and free corrosion potential
- Specimen electrochemically monitored via a Gamry potentiostat using Ag/AgCl reference electrode maintained at a constant distance (2 mm) from the specimen, a platinum counter electrode, and the specimen as the working electrode

• Digital image correlation (DIC) technique used to measure strain

CF tests done while measuring the open circuit potential (OCP) vs. reference electrode during load-unload

Electrochemical corrosion cell made of plexiglass

CF Test Procedures

Forces and fluxes were measured under CF

- Performed CF tests for 16 samples at 87%,
 80%, 70% and 57% of yield stress (460 MPa),
 load ratio = 0.01, loading frequency=0.04Hz
- Tests stopped after failure of specimens

4.055 4.06 4.065

4.07 4.075 4.08 4.085 4.09 4.095

Cycle

Entropy Generation in CF

• Total entropy is measured from the hysteresis loops resulted from fatigue (stress-strain) and corrosion (potential-electrical) in each loading cycle

Entropic Endurance and Entropy-to-Failure

- Similarity of the total entropy-to-failure for all tests supports the entropic theory of damage offered proposed
- More tests needed to reduce the epistemic uncertainties and further confirm the theory

Ratio of Corrosion and Fatigue Entropies to the Total Entropy

Reducing fatigue stress allows more time for corrosion

Thermodynamics of Damage: A Reliability Perspective

- Materials, environmental, operational and other types of variabilities in degradation forces impose uncertainties on the total entropic damage
- Assuming a constant entropic-endurance, D_f

• The reliability function can be expressed as [1]

$$P_r(T \le t_c) = \int_0^{t_c} g(t)dt = 1 - \int_0^{D_f=1} f(D)dD$$

$$R(t_c) = 1 - P_r(T \le t_c) = \int_0^{D_f = 1} f(D) dD$$

 T_c = Current operating time; g(t) = distribution of time-to-failure, f(D|t) = distribution of damage at t

[1] Thermodynamics as a Fundamental Science of Reliability, A. Imanian, M. Modarres, Int. J. of Risk and Reliability, Vol.230(6), pp.598-608. DOI: 10.1177/1748006X16679578.(2016).

Entropic-Based CF Reliability

1.5 Cycle

(a)

0.5

2.5

2

Conclusions

- A thermodynamic theory of damage proposed and tested
- An entropy-based damage model derived from the second law of thermodynamics and used it to develop models for reliability analysis
- The proposed theory offered a more fundamental model of damage and allowed for incorporation of all interacting dissipative processes
- Entropy generation function derived for corrosion-fatigue mechanism in terms of leading dissipative processes
- A simplified version of entropic corrosion-fatigue damage model experimentally studied which supported the proposed theory and the thermodynamic-based interpretation of reliability

Thank you

Approaches to derive and quantify entropy

Corrosion Current vs. Potential: Effect of Time and Stress

- To obtain the correlation between *corrosion current and potential*, polarization curves were developed at different stress and immersion values
- Stress and immersion time variations showed stochastic effect on polarization curve
- The sum of the exponential terms showed a good fit to the part of polarization which involved the open circuit potential (OCP)

