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Objectives 

Goal: Prediction of fatigue crack initiation
based on Strain Energy Expended and
Thermodynamic Entropy Generation

Thermodynamic assessment of fatigue of
specimens with stress concentration (center
and edge hole specimens)

Develop a probabilistic model of the Life
Expended of Al 7075-T561
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Energy Approach 

σ

εΔσ
Δεe

Δεp

Δε

ΔWe
+ 

ΔWp

 ep WWW

B
fNAW 

Total strain energy is the summation of plastic and elastic energy

Total strain energy is correlated to life with constants A and B

ΔWp: plastic strain energy per cycle

ΔWe+: elastic strain energy per cycle in tension

Δεe: elastic strain range

Δεp: plastic strain range
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Experimental Overview 

Experimental Apparatus and Sample Geometry 

Single Hole Sample 

Edge Notch Sample 

Heavy-duty uniaxial fatigue testing machines 
Rated 100 kN capacity; 30 Hz frequency 

508 mm 

254 mm 

R=2.54 mm 
25.4 

mm 

Thickness:12.7 mm 

Material: 

Aluminum 7075-T6, T651 
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Strain Energy Model 

 Cumulative Strain Energy Model 
 
• Transformed to Bayesian Regression Form 

 
 
 
 Error modeled as 

 
 C and m – Parameters 

 
 Wtot – Cumulative Total Strain Energy  

 
 Le – Life Expended (0 – 100%) 

 
 Ni is the crack initiation, N is the cycle number 
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Strain Energy Approach to 

Crack Initiation  
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Total Strain Energy 

Crack Initiation  
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Strain Energy Results 
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Note: 
Some samples are from different batches with different microstructures 
Resutls of both edge notch and single hole samples are included 
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Entropy Approach 

to Crack Initiation 

Fatigue work 

Fatigue work 

deS 
diS 

Specimen as a 
thermodynamic system 

dS = deS + diS 

Total Entropy = Entropy Exchange + 
Entropy Generation 

Entropy exchange with 
the surroundings 

Entropy generation due 
to fatigue 

Indication of fatigue 
degradation; related to 

plastic deformation 
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Entropy Generation in Fatigue 

• All the deformations cause positive entropy generation rate

•              Entropy generation due to plastic deformation 

•             Entropy generation due to internal variables 

•  Entropy generation due to damage 

•                   Entropy generation due to heat conduction in the material 

pT
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

kkVA
T
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T
T

q.grad2

1

– entropy generation rate;      – stress tensor;      – plastic strain rate; Y – elastic energy release rate
 T – absolute temperature;  Vk – internal variable; Ak – associated thermodynamic  forces; D – damage variable 
 
q – heat flux; Wp – cyclic plastic strain energy;   
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This term is generally associated with the work hardening 
effect and is almost 5-10% of the plastic strain energy. This is 
often neglected. 
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Assessment of Entropy Generation in Fatigue Experiment 

𝜎 
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σ: stress 
q: heat flux 
T0: Ambient Temperature 
TTC: thermocouple temperature 
 

Accumulated entropy generation, si up to crack initiation time, ti :  

Hysteresis Loop 

si = (ò
1
T

s :e
·

p-
1
T
AkVk -

1
T
Y D-

1
T 2 q.gradT )dt

COPYRIGHT © 2012, M. Modarres



13 

Fatigue Life Estimation based on Entropy Generation 

Le = f (si )

S

Si
μ
N

Ni

• Thermodynamic Entropy and Life Expended are Correlated: 

• Experimental results show a good correlation between entropy generated  
and life expended 

S= Cumulative entropy generation at a given cycle  
Si=Cumulative entropy at entropy generation 
N= Given Cycle 
Ni=Cycle to crack initiation 
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Entropy Generation 

at Crack Initiation  

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

E
n

tr
o

p
y
 G

e
n

e
ra

ti
o

n
 (

M
J
/
m

3
-K

) 

Sample # 

Entropy Generation 

276 MPa

310 MPa

COPYRIGHT © 2012, M. Modarres



15 

Entropy Generation 

Crack Initiation  
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Conclusions 

 Fatigue life assessment based on strain energy expended and 
thermodynamic entropy generation can provide a physical explanation 
without a large number of model parameters   

 Test results and data are generic and applicable to a variety of 
structural geometries and components 

 The accumulated entropy for crack initiation for Aluminum 7075-T6 was 
found to range between 0.15 to 0.36 MJ/(M3K) with an average of 0.26 
MJ/(M3K). 

 Further experimental work is required to prove the existance of the 
entropy limit for crack initation at variable stress amplitude and variable 
frequency 

 The entropy accumulation shows a linear correlation with the life 
expended, providing a reliable tool for fatigue life assessment 
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GLOBAL CAPABILITY 

 Current periodic fleet inspection practices: 

 Labor-intensive, time consuming and expensive 

 Subject to human error 

 Inspection itself may cause damage 
 

 Inspection intervals selected such that an undetected crack will not 
grow to critical size before the next inspection 
 

 High levels of uncertainty regarding current & future damage state 
of structure drive recurring manual inspection requirements: 

 In-situ NDI (Acoustic Emission, Lamb Waves, etc.) can reduce manual 
inspection requirements by reducing underlying uncertainty. 
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Structures 
weakened by 

cracks 

Many structures 
currently past 
their safe-life 
fatigue life 

Structures 
routinely 

inspected to 
remain in service 
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CONTRIBUTION 

 Current Acoustic Emission systems can detect the presence of 
growing cracks, but cannot determine the sizes of such cracks: 

 Acoustic Signal must be correlated to crack lengths and growth rates 

 Must be discriminated above background noise level 

 Must be able to account for variable amplitude loading environment 
 

 Measurement of small and large cracks allows an AE system to be 
used to determine future inspection and repair requirements based 
on true current damage state 
 

 UMD has Demonstrated Correlation of AE signal to crack size and 
growth rate for constant-amplitude loading 
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Structures 
weakened by 

cracks 

Many structures 
currently past 
their safe-life 
fatigue life 

Structures 
routinely 

inspected to 
remain in service 
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OBJECTIVES 

 

Model development and validation of crack growth rates correlation 
with AE signals 

 

Probabilistic AE-model development of in-situ monitoring of small 
crack growth 

 

Investigating the sensitivity of AE signal features to crack initiation 

 

COPYRIGHT © 2012, M. Modarres



22 

Structural Health Management (SHM) 

 Paradigm shift: offline periodic inspections + online SHM

 Structural health management (SHM) is the online assessment of
structural integrity using appropriate NDI technology

 SHM used for:

 Direct assessment of the state of structural health in real-time

 Provide feedback from the structure to improve the prediction of
the empirical models
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∆FH1 ∆FH2 
∆FH3 

Crack 
Size 

Flight 
Hours 

Safe Safe 

Unsafe 

∆FH’3 

Rogue flaw 
Assumed initial 
flaw 

Critical 
size 

Undetected flaw 
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AE monitoring: Theory & Background 

AE Features 
Amplitude 

Energy 

Rise time 

Counts (Threshold crossing) 

Frequency content 

Waveform shape 
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Correlation between AE features & 

Fracture parameters 

[Bassim, M.N., St Lawrence, 
S. & Liu, C.D., 1994. 
Detection of the onset of 
fatigue crack growth in rail 
steels using acoustic 
emission. ENG FRACT 
MECH, 47(2), 207-214. 

AE Features 

Amplitude 
Energy 

Rise time 
Count rate (dc/dN) 

Frequency 
Waveform shape 

da/dN 
K 

Fracture Parameters 

K 

dc/dN 

Log-log Scale 
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Statistical model development 
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AE-based Crack Size Estimation 
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AE-Based Crack Size Estimation 
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AE-Based vs. Empirical Crack Growth Model 

28 

Empirical Crack Growth Model AE-Based Crack Growth Model 
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Bayesian Fusion 

 The necessary information for developing a structural 
health diagnostic and prognostic (i.e., SHM) solution is 
often obtained from various sources. 
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AE 
Monitoring 

Periodic 
Inspection 

Bayesian Fusion 

Updated Crack Size PDF 

Updated Crack Growth Rate PDF 

Updated Model Parameters 

Empirical 
Model 
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Dynamic State-Space Model 

 Recursive Bayesian estimation is a probabilistic approach for estimating an 
unknown probability density function recursively over time using incoming 
uncertain observation (noisy measurements) and a mathematical process 
model that describes the evolution of the state variables over time. 

 

30 

  
 
  
 

zk-2 zk-1 zk 

xk-2 xk-1 xk 
State variable 
at time step 

k:  

Observations 
at time step 
k:  

p(xk|xk-1) 
Process model 

(state transition model) 

p(zk|xk) 

Observation model 

Key assumptions: 

1.States follow a first order Markov process. 

2.Observations independent given the states. 

We are interested in posterior 
distribution of state xk , given the 
time series of past observations: 
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Results: Effect of Frequency of Inspections 

COPYRIGHT © 2012, M. Modarres



32 

Prognosis Results 

32 

Predicted crack 
growth trajectory 
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Crack Initiation and Small Crack Growth 

 Probabilistic model development for steady state crack growth: 

 

 

Started development of a probabilistic model for small crack 

growth: 

 

• Small crack length measurement 

• Close-up camera for large cracks 

• Optical microscopy for small cracks 

• Correlation between Small crack growth rates and AE 

signals 
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Crack Initiation and Small crack measurement 

•Cracks less than 1mm long considered to 

be small  

( <0.04 in. or <0.001 m) 

•Time-lapse photography 

•50X magnification microscope for 

small cracks     

•Image processing toolbox for crack size 

measurement 
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0.0027 in 
Crack Growth 

0.019 in. 

Optical microscopy for small cracks 
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y = 0.0404x - 15.708

R2 = 0.1705
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Small crack growth rate versus AE count rate 

  
•Linear correlation observed 
•Probabilistic prediction model can be achieved with more data 
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y = 0.0683x - 16.756

R2 = 0.4919
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Small crack growth rate versus AE energy rate 

  
•Linear correlation observed 
•Higher R2 and larger slope than count rate 
•Energy showed more sensitivity to crack growth 
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Conclusions and Future Steps 

• The AE count rates showed a linear correlation with 
crack growth rate for large cracks 

• The probabilistic model was successfully applied for 
large crack estimation 

• For small cracks the AE energy rates showed more 
sensitivity to crack growth 

• Ongoing AE-based experiments to account for 
different loading conditions 

• Ongoing experiments to investigate the sensitivity of 
AE signal features to crack initiation 

• Probabilistic model development for small crack 
length 
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Thermodynamic Entropy as Defined in Fatigue 

• Hysteresis Dissipation:    

 

𝜀 

𝜎 
𝐸 𝐸 − 𝛿𝐸 

- Energy dissipated 
due to plastic 
deformation (minus 
the energy dissipated 
resulting from internal 
variables) 

-Energy dissipated due to 
elastic damage 

-Energy dissipated due to 
internal variables 

Hysteresis Loop 

s :ep -AkVk -YD

dep dee
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Accomplishments for past year 

 Experimental 

• Implement use of  
• Strain gauges and thermocouples 

• Force and displacement control tests 

• Multiple stress ratios: 

 R = 0, 0.1, 0.4 

• Finite element modeling 

• Implementing Infra Red technique for T 

 Model development 

• Developed a Bayesian regression framework in MATLAB  
• Move away from WinBUGS 

• Investigating conversion to C 

 

 

Preliminary IR camera results 
showing temperature change at edge 

notch 
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Expected accomplishments for current year 

Ending Sept. 31, 2012 

• Experimental 

• Continued optical and electron 
microscope inspection 

• IR Camera  

• Finite Element Modeling 
(Temperature) 

• Model development 

• User’s guide 

• Conversion to C 

• Fine tuning / updating with 
additional experimental results 
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Two heavy-duty uniaxial fatigue testing machines 
Rated 22000 lb (100kN) force capacity; 30 Hz frequency 
Air cooled hydraulic power pack 

Fracture Mechanics and Probabilistic Physics of Failure Laboratory 
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Fracture Mechanics and Probabilistic Physics of Failure Laboratory 

Heating Chamber Corrosive Medium 

Chamber 

Thermocouple 

Strain Gauge 

Strain gauges and 

Thermocouples 
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Scatter Reduction 

 

• Different batches 

• Sample etching 

• Single Batch 

• Inclusion vs. flaw 

• SEM 

• Temperature 

• IR camera  

• Sample alignment 

 

Samples from different batches showing 
different microstructures 
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Information ‘Entropy’ 

• Statistical Entropy 
• Entropy of a macroscopic system consisting of a large number of 

microscopic identical particles 
 
 
 
 
 
  

• Information Entropy 
 
 
 
 
• Maximum (information) entropy: 

• “maximally noncommittal with regard to missing information” 
• Lagrangian multipliers 

 
 

kB: Boltzmann’s constant 
Ω : thermodynamic probability 
P: probability of finding a particle in a microstate i 

K: Constant 
 

Janes, E.T., “ Information Theory and Statistical Mechanics,” The Physical Review, 1957 106 
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