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Objectives

T

» Goal: Prediction of fatigue crack initiation
based on Strain Energy Expended and
Thermodynamic Entropy Generation

» Thermodynamic assessment of fatigue of
specimens with stress concentration (center
and edge hole specimens)

» Develop a probabilistic model of the Life
Expended of Al 7075-T561
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Energy Approach

e

Total strain energy is the summation of plastic and elastic energy

AW =AW, +AW,,

Total strain energy is correlated to life with constants 4 and B

.. EEEEE = BEEEE

AW =AN;
ol
AWp: plastic strain energy per cycle AW, AW
A o+
AW, elastic strain energy per cycle in tension p  / 7
. . A , -
Ac¢,: elastic strain range ’ 7 As
Ag,,: plastic strain range
Ag
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Experimental Overview
Experimental Apparatus and Sample Geometry

e .. S

Edge Notch Sample

/ R=2.54 mm

Thickness:12.7 mm

Single Hole Sample

Material:
Heavy-duty uniaxial fatigue testing machines

Rated 100 kN capacity; 30 Hz frequency Aluminum 7075-T6, T651
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Strain Energy Model
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» Cumulative Strain Energy Model

* Transformed to Bayesian Regression Form

logh

tot

=logC—mloglL, +¢
Error modeled as ¢ = NOR(0,0)

C and m — Parameters

w,,, — Cumulative Total Strain Energy

L, - Life Expended (0 — 100%) I, = %;N <N

l

N. is the crack initiation, N is the cycle number
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Strain Energy Approach to
Crack Initiation
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Total Strain Energy
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Total Strain Energy
Crack Initiation
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Strain Energy Life, Expended
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Strain Energy Results
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Some samples are from different batches with different microstructures
Resutls of both edge notch and single hole samples are included
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Specimen as a
thermodynamic system

Fatigue work

to Crack Initiation

Entropy Approach

Total Entropy = Entropy Exchange +
Entropy Generation

dS=d;S+dS
Entropy exchange with Entropy generation due
the surroundings to fatigue

Indication of fatigue
degradation; related to
plastic deformation
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Entropy Generation in Fatigue

T
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- All the deformations cause positive entropy generation rate

| . 1 1 1
LS.‘] :?0:8 —?A V —?YD—T—qgradT

| : : :
. —0c:E, Entropy generation due to plastic deformation
T
1 : : : :
- =AYV, Entropy generation due to internal variables
r This term is generally associated with the work hardening
effect and is almost 5-10% of the plastic strain energy. This is
often neglected.
I - _
g ;YD Entropy generation due to damage

. %q_grad]’ Entropy generation due to heat conduction in the material

S — entropy generation rate; ¢ — stress tensor; é — plastic strain rate; Y — elastic energy release rate
' T — absolute temperature; V, — internal variable; A, — associated thermodynamic forces; D — damage variable

heat flux; Wp — cyclic plastic strain energy;
A ea‘ %p . I I
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Assessment of Entropy Generation in Fatigue Experiment
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Accumulated entropy generation, s; up to crack initiation time, ¢ :

~1 1 - 1 . 1
s, = Q(=S:6-—A4V - =Y D- —q.gradT")dt
T Tt T T’
171
3 hest ux
To: Ambient Temperature
T+c: thermocouple temperature
Hysteresis Loop [ [ I [

O
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Fatigue Life Estimation based on Entropy Generation
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« Thermodynamic Entropy and Life Expended are Correlated:

Le — f(Si)

« Experimental results show a good correlation between entropy generated
and life expended

S N
S, N,

S= Cumulative entropy generation at a given cycle
S;=Cumulative entropy at entropy generation

N= Given Cycle

N,=Cycle to crack initiation
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Entropy Generation
at Crack Initiation
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Entropy Generation
Crack Initiation
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Entropy Generation, Life Expended
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Conclusions
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» Fatigue life assessment based on strain energy expended and
thermodynamic entropy can provide a physical explanation
without a large number of model parameters

» Test results and data are generic and applicable to a variety of
structural geometries and components

» The accumulated entropy for crack initiation for Aluminum 7075-T6 was
found to range between 0.15 to 0.36 MJ/(M3K) with an average of 0.26
MJ/(M3K).

» Further experimental work is required to prove the existance of the
entropy limit for crack initation at variable stress amplitude and variable
frequency

» The entropy accumulation shows a linear correlation with the life
expended, providing a reliable tool for fatigue life assessment
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GLOBAL CAPABILITY

Many structures Structures
currently past routinely
their safe-life inspected to

fatigue life remain in service

Structures

weakened by
cracks

» Current periodic fleet inspection practices:
v Labor-intensive, time consuming and expensive
v Subject to human error
v" Inspection itself may cause damage

» Inspection intervals selected such that an undetected crack will not
grow to critical size before the next inspection

» High levels of uncertainty regarding current & future damage state
of structure drive recurring manual inspection requirements:

v In-situ NDI (Acoustic Emission, Lamb Waves, etc.) can reduce manual
inspection requirements by reducing underlying uncertainty.
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CONTRIBUTION

Many structures Structures
currently past routinely

Structures
weakened by

G their safe-life inspected to

fatigue life remain in service

» Current Acoustic Emission systems can detect the presence of
growing cracks, but cannot determine the sizes of such cracks:

v" Acoustic Signal must be correlated to crack lengths and growth rates
v Must be discriminated above background noise level
v Must be able to account for variable amplitude loading environment

» Measurement of small and large cracks allows an AE system to be
used to determine future inspection and repair requirements based
on true current damage state

» UMD has Demonstrated Correlation of AE signal to crack size and
growth rate for constant-amplitude loading
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OBJECTIVES
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»Model development and validation of crack growth rates correlation
with AE signals

»Probabilistic AE-model development of in-situ monitoring of small
crack growth

»Investigating the sensitivity of AE signal features to crack initiation
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Structural Health Management (SHM)
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T

» Paradigm shift: offline periodic inspections + online SHM

» Structural health management (SHM) is the online assessment of
structural integrity using appropriate NDI technology

» SHM used for:
v" Direct assessment of the state of structural health in real-time
v" Provide feedback from the structure to improve the prediction of
the empirical models

Crack .
Size | /S A -

Critical
i Safe Safe

: . — Rogue flaw
| — Assumed initial

Unshfe flaw

Undetected flaw——

4

: . AP Flight
: : ; 3 Hours
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AE monitoring: Theory & Background

T
Rise
! | - ]
Volts Time
f; “‘\\'/ Energy
I
Amplitude

_ Threshold

Threshold i
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AE Features

Amplitude

Energy

Rise time

Counts (Threshold crossing)
Frequency content
Waveform shape
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Correlation between AE features &
Fracture parameters

T

AE Features

Amplitude
Energy

Rise time

Count rate (dc/dN)

Frequency

Waveform shape

dN

4

dc
_ .—1/A
AK = A, 2 (—

[Bassim, M.N., St Lawrence,
S. & Liu, C.D., 1994.

Detection of the onset of
fatigue crack growth in rail

steels using acoustic

dN

d
= = A, (AK)“

)

1/A-

emission. ENG FRACT
MECH, 47(2), 207-214.

dc
logAK = ay log(

dN

)+a2
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Fracture Parameters

da/dN
AK

AK 4

A

Log-log Scale
dc/dN
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Statistical model development

Vi ~ N(, 0;)
U = a1X; + A
g; = Y1€Xp (V2 X;)
- 1 1 (Vi — (ayx; + az)
/ p(Dlay, az,v1,¥2) = gmﬂexp(_i( y1exp (y2x,) ))
D = {(x;,¥;)| x; =log(dc/dN);,y; = log AK;};_, P(D|@)P(@)

p(O|D) =

/ p(D)

O ={ay,a, V1, V-} p(D) = fp(D|@)P(@)d@
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PDF

AE-based Crack Size Estimation
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=) (Normalized)
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dN

log(

AE-Based Crack Size Estimation
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AE-Based vs. Empirical Crack Growth Model
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AE-Based Crack Growth Model

Median

= = = 5%-95% Bounds 1
Measured !

1 2 3 4 5 6 7
Cycles (N)

COPYRIGHT © 2012, M. Modarres

Crack size (inch)

2.5

-
w

sy

0.5F

.. S

Empirical Crack Growth Model

— [edian
= = = 5%-95% Bounds
Measured

Cycles (N)

28




Bayesian Fusion
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» The necessary information for developing a structural
health diagnostic and prognostic (i.e., SHM) solution is
often obtained from various sources.

Empirical
Model
AE . Updated Crack Size PDF
Monitoring
Bayesian Fusion Updated Crack Growth Rate PDF
Periodic
. Updated Model Parameters
Inspection
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Dynamic State-Space Model

T I 4

¥ Recursive Bayesian estimation is a probabilistic appFo_a-Eh for estimating an
unknown probability density function recursively over time using incoming
uncertain observation (noisy measurements) and a mathematical process
model that describes the evolution of the state variables over time.

Observations . - -
at time Ste?lr:').L k-2 k-1 k | Observation model
kz, €R /
S N M | P(zry)
State variable
at time step P(Xg) s
k. Xp € R™ POegxs. )
S~__ Process model
Key assumptions: (state transition model)

1. States follow a first order Markov process. p(Xp |Xp—1,Xp—2, -, X1) = P(Xp|X3—1)

2.0bservations independent given the states. P(Zp Xk, Ze—1, -, 21) = (2| X))
We are interested in posterior
distribution of state x,, given the
time series of past observations:

(X |2y, Zpe 1y oeny Zy) =7
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Results: Effect of Frequency of Inspections
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Prognosis Results
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Crack Initiation and Small Crack Growth

T
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Probabilistic model development for steady state crack growth:

Started development of a probabilistic model for small crack
growth:

« Small crack length measurement
* Close-up camera for large cracks
« Optical microscopy for small cracks
« Correlation between Small crack growth rates and AE
signals
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Crack Initiation and Small crack measurement

T "N s .. S

*Cracks less than 1mm long considered to
be small
(<0.04 in. or <0.001 m)
*Time-lapse photography
50X magnification microscope for
small cracks
sImage processing toolbox for crack size
measurement
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Optical microscopy for small cracks
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Crack Growth
0.0027 in / 0.019in.

\
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Small crack growth rate versus AE count rate
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log(da/dN)

y =0.0404x - 15.708

R?>=0.1705

Log(dc/dN) - normalized

Linear correlation observed
*Probabilistic prediction model can be achieved with more data
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Small crack growth rate versus AE energy rate
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0 -

-2 - y =0.0683x - 16.756

4 - R?=0.4919
— _6 1
2
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S
En *
e . ”"° o

14 -

L 4 L 4
16 - L 4
'18 T T T T T T T 1
25 35 45 55 65 75 85 95 105
log(dE/dN) - normalized

Linear correlation observed
*Higher R? and larger slope than count rate
*Energy showed more sensitivity to crack growth
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Conclusions and Future Steps
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* The AE count rates showed a linear correlation with
crack growth rate for large cracks

* The probabilistic model was successfully applied for
large crack estimation

* For small cracks the AE energy rates showed more
sensitivity to crack growth

* Ongoing AE-based experiments to account for
different loading conditions

* Ongoing experiments to investigate the sensitivity of
AE signal features to crack initiation

* Probabilistic model development for small crack
length
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Backup Slides
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Thermodynamic Entropy as Defined in Fatigue
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Hysteresis Dissipation: s:e-AV-YD

-Energy dissipated due to
internal variables

‘ -Energy dissipated due to
elastic damage

- Energy dissipated
due to plastic

deformation (minus
the energy dissipated Hysteresis Loop
resulting from internal

variables) oe ” Ldg

40

COPYRIGHT © 2012, M. Modarres



Accomplishments for past year
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» Experimental

* Implement use of
Strain gauges and thermocouples
Force and displacement control tests

* Multiple stress ratios:
R=0,0.1,04
* Finite element modeling
* Implementing Infra Red technique for T

» Model development

- Developed a Bayesian regression framework in MATLAB
Move away from WinBUGS
Investigating conversion to C

Preliminary IR camera results
showing temperature change at edge
notch
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Expected accomplishments for current year
- Ending Sept. 31 2012_‘_ —

- Experimental

* Continued optical and electron
microscope inspection

* IR Camera

* Finite Element Modeling
(Temperature)

« Model development
* User's guide
* Conversion to C

* Fine tuning / updating with
additional experimental results
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Fracture Mechanics and Probabilistic Physics of Failure Laboratory
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Two heavy-duty uniaxial fatigue testing machines
Rated 22000 Ib (100kN) force capacity; 30 Hz frequency
Air cooled hydraulic power pack
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Fracture Mechanics and Probabilistic Physics of Failure Laboratory
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Thermocouple

l

Strain Gauge

Heating Chamber Corrosive Medium Strain gauges and
Chamber Thermocouples
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Scatter Reduction

.. EEEEE = BEEEE

T

 Different batches

« Sample etching
* Single Batch

» Inclusion vs. flaw
- SEM

* Temperature

* IR camera Samples from different batches showing
. different microstructures
« Sample alignment
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Information ‘Entropy’
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« Statistical Entropy
« Entropy of a macroscopic system consisting of a large number of
microscopic identical particles

S=k31n.Q.

kg: Boltzmann’s constant
Q : thermodynamic probability
P: probability of finding a particle in a microstate i

m
S = _kB Z Pi ]H(PL)
=1

* Information Entropy

K: Constant

m
S = —KZ Pi ln(PL)
i=1

« Maximum (information) entropy:
* “maximally noncommittal with regard to missing information”
« Lagrangian multipliers
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