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Traditional Regression and Bayesian 
Regression 

•  Traditional Regression assumes an underlying process (e.g., failure process  
described by the failure rate model λ(t)) which generates clean data.  
The goal is to describe the underlying model in the presence of noisy data. 
 
•  Bayesian Regression Specify the prior             of a set of 

probabilistic models. The likelihood of      after observing 
data D  is  

   The posterior probability of       is given by    
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GP Regression 

•  It	
  is	
  a	
  nonlinear	
  regression	
  when	
  you	
  need	
  
to	
  learn	
  a	
  function	
  f	
  with	
  uncertainties	
  from	
  
data	
  D	
  =	
  {X,	
  y}	
  

 

Ref: Eurandom 2010, Z. Ghahramani 
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GP Regression (Cont.) 

• A Gaussian process defines a distribution over functions p(f) which
can be used for Bayesian regression

 p(f|D) = p(f)p(D|f)/p(D) 

• Gaussian processes (GPs) are parameterized by a mean function, μ(x),
and a covariance function, or kernel, K(x, x’).

• The covariance matrix K is between all the pair of points x and x' and
specifies a distribution on functions

and similarly for p(f(x1), . . . , f(xn)) where now μ is an n x 1 
vector and Σ is an n x n matrix 
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GP Regression (Cont.) 

• Set of random variables, any finite
collection of which follows joint Gaussian
distribution

• Gaussian distribution specified by mean,
μ(x), and kernel function, k(x1,x2) 

• May also be defined using standard linear
model form

y = f (x)+ε
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Kernel Function 

• Kernel function = covariance function
• Kernel function determines correlation between data

points
• Can model trends in data such as periodicity

• Popular example is squared-exponential kernel
function

• l is the characteristic length-scale of the process
(showing, "how far apart" two points have to be for
X to change significantly

• Used to develop overall covariance matrix K for
vector of data
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Kernel Function Hyperparameters 

• Kernel functions contain unknown
hyperparameters

• Hyperparameters can be chosen by maximizing
log-marginal likelihood given by

• Achieved using conjugate gradient optimization
technique
• Built-in option in available software packages

• Chi-square goodness-of-fit can also be applied to
test data to assess model
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Log Gaussian Processes 
• Observed data Y are strictly positive
• Assume log(Y) is normally distributed

  

• Can use conditional probability to determine prediction
for f * 

• Inverse transform can be used to proper domain
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Application to Fleet of Vehicles 

•  Use Log GPR to model rate-of-occurrence of 
failures per month for fleet of vehicles 
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Covariance Function Choices 
•  Data appear to have periodic behavior along 

with noise 
•  Examine kernel function alternatives to describe 

correlation within data 
•  Combinations of kernel functions are also kernel 

functions 
•  Options include Squared Exponential (SE), Noise, 

Periodic, Polynomial, etc. 

•  Can use negative log-likelihood to discriminate 
between possible kernel functions 
•  Smaller values indicate higher likelihood  
•  Better description of data 
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Kernel Function Likelihood 
Kernel Function 

Alternative Description Negative Log 
Likelihood 

1 SE, Periodic, 
Noise 7.84 

2 SE, Noise 8.54 
3 Noise 15.83 
4 SE, Periodic 8.13 
5 SE 8.54 

6 SE, Polynomial, 
Noise 8.54 

7 Polynomial 13.33 

8 Rational quadratic, 
Noise 8.51 

9 Rational quadratic 8.51 

Sum of squared exponential, periodic, and noise kernels 
yields highest likelihood and best description of data 
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Covariance Function and 
Hyperparameters 

Parameter Value
θ1 (SE 1) 4.38 
θ2 (SE 2) 0.31 

θ3 (Periodic 1) 0.13 
θ4 (Periodic 2) 1.03 
θ5 (Periodic 3) 0.26 
σn (Noise) 0.12 
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Predicted Result 

**Dashed lines indicate 95% probability interval 

“+” indicates test data used in 
goodness-of-fit test 

Model provides probabilistic 
prediction of failures in future 

months 
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Anomaly Detection Example 

**Dashed lines indicate 95% probability interval 
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Conclusions and Possible Extensions 

• LOG GP Regression is powerful technique for
modeling complex nonlinear behavior
• Provides probabilistic indication of reliability problems

vs. typical trends within data

• Can be extended to model more complex
nonlinear relationships
• Only require appropriate kernel function

• Can also handle multidimensional inputs
• Systems in different locations, different ages, etc.
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