Recent Developments in Risk Assessment: Future Perspectives

Mohammad Modarres Minta Martin Professor of Engineering Director, Reliability Engineering Program Department of Mechanical Engineering University of Maryland, College Park, MD 20742

> Presentation to GSE Systems December 18, 2013

- PRA in Light of the Fukushima Daiichi Accident
- PRA Challenges
 - Modeling
 - Data
- Quick Overview of PRA Advances
- Opportunities for future developments
- Conclusions

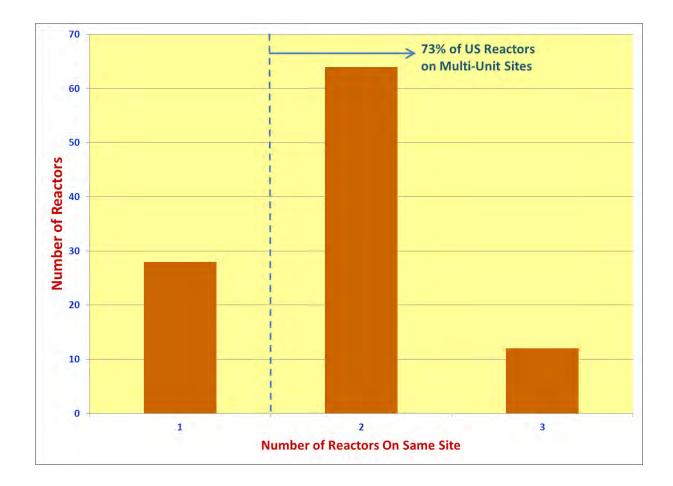
Transportation

- CNG and H Fueled Vehicles
- Oil and Gas Pipeline
- Aerospace
- Food Safety
 - Food production
 - Risks of Epidemics

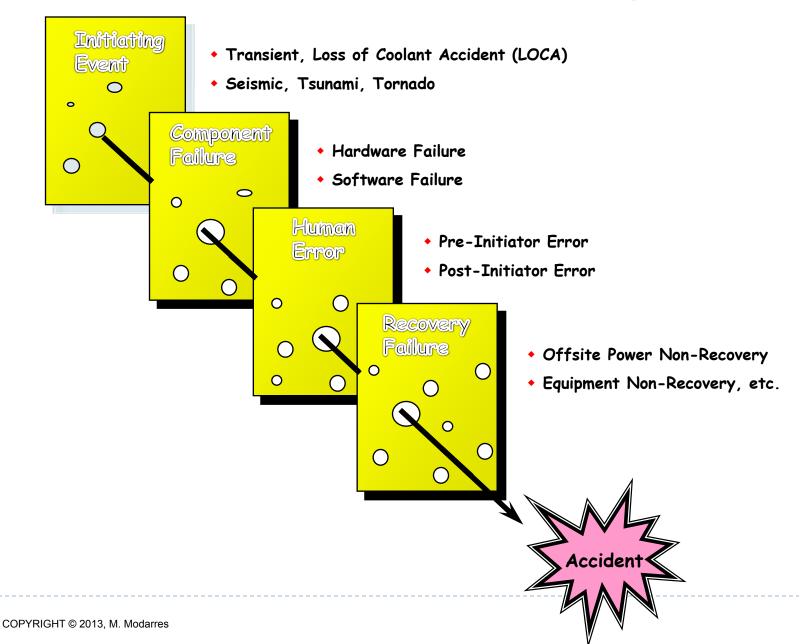
Nuclear

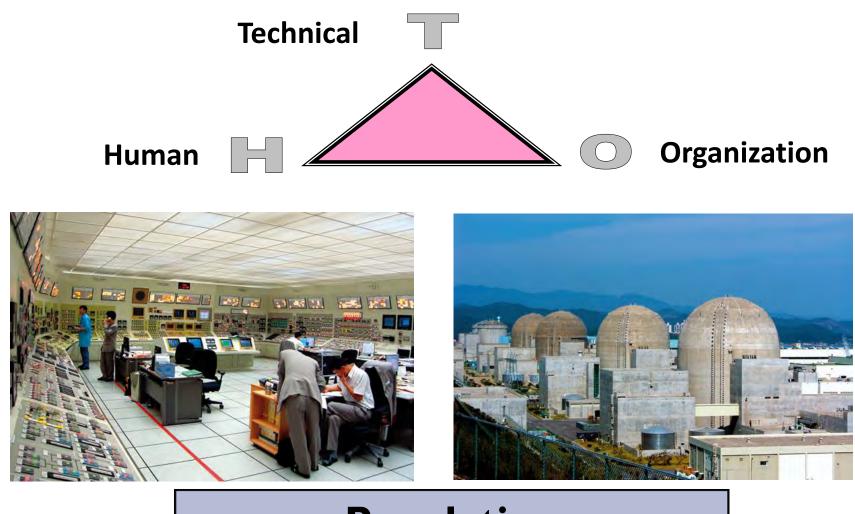
- Post Fukushima
- Small Modular Reactors
- Dynamic Characteristics of Multi-Module / Multi-Unit Scenarios
- Risk Management for Reactor Protection and Accident Mitigation

Critical Safety Implications of Fukushima Events


- Concurrent Events and Common Cause Failures
 - Great East Japan Earthquake followed by tsunami (50 minutes later)
 - Earthquake 9.0 vs. design 8.2
 - Tsunami wave 14 m vs. design 5.7 m
 - □ Maximum tsunami height 38.9 m in Aneyoshi, Miyako stone marker!
 - Lost offsite power for Units 1-6 due to earthquake
 - Units 1-3 in power operation; Units 4-6 in shutdown
 - All 12 <u>diesel generators</u> in service for Units 1-6 (1 DG for Unit 6 in maintenance) lost due to <u>tsunami</u>
- Simultaneous Damages to the Multiunit Site
 - Hydrogen explosions at Units 1, 3 and 4
 - Melting of multiple reactor cores (i.e., Units 1, 2 and 3) and spent fuels (i.e., Unit 4)

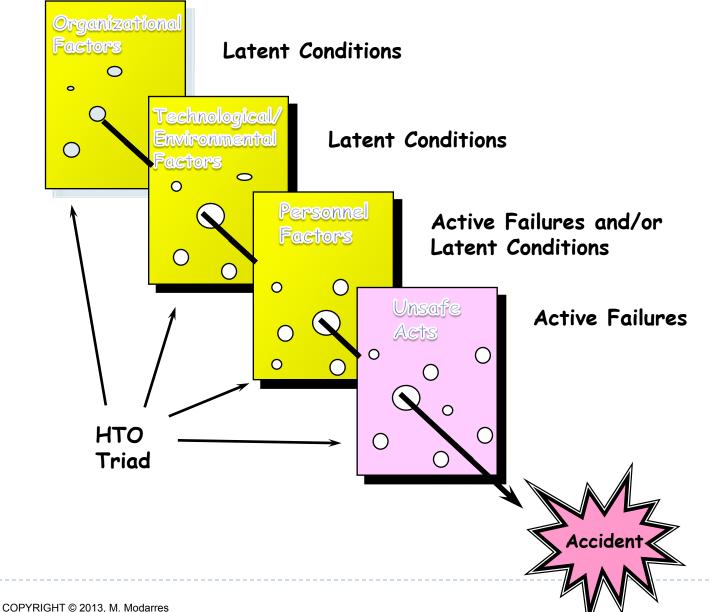
Fukushima Daiichi / Multi-Unit Issues


- Units 1, 2, 3 experienced core damage and large releases of radioactive material from containment
- No core damage at Unit 4 largely due to shutdown/defueled state
- Units 5 and 6 averted core damage due to one EDG being protected from flooding and heroic operator actions
- Key cause of accident was flood damage to emergency switchgear and EDGs located in basement of turbine buildings and resulting station blackout to Units 1-4
- An internal flooding PRA was never done but would have likely identified flood vulnerability and improved flood protection



Source: K. Fleming

Accident Causation from a PRA Perspective



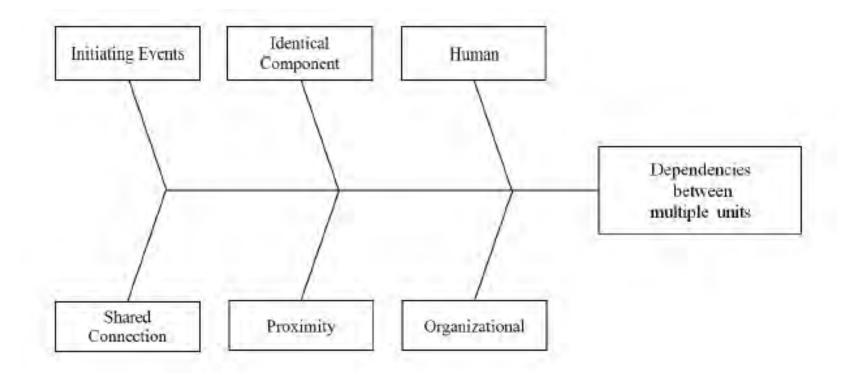
Regulation

Accident Causation from an HTO Perspective

Element	Weakness in HTO Elements	Remarks on Global Status
of HTO	as Revealed by the Fukushima Accident o Inappropriate definition of design basis	
н	o Improper analysis of plant risk (e.g., underestimation of external events risk, less emphasis on concurrent events and site risk)	Globally was the case prior to the Fukushima accident
т	o Lack of sufficient equipment to cope with extreme events simultaneously affecting the whole site o Lack of plant emergency guidelines for extreme site events (e.g., as caused by natural disasters)	Globally was the case except the US where post 9/11 mitigative measures are already in place (e.g., Extensive Damage Mitigation Guidelines, portable pumps)
0	o Lack of emergency management capability for multiunit events	Globally was the case prior to the Fukushima accident except the US wherethe emergency management capability has been considerably enhanced since the 9/11 terrorist attack

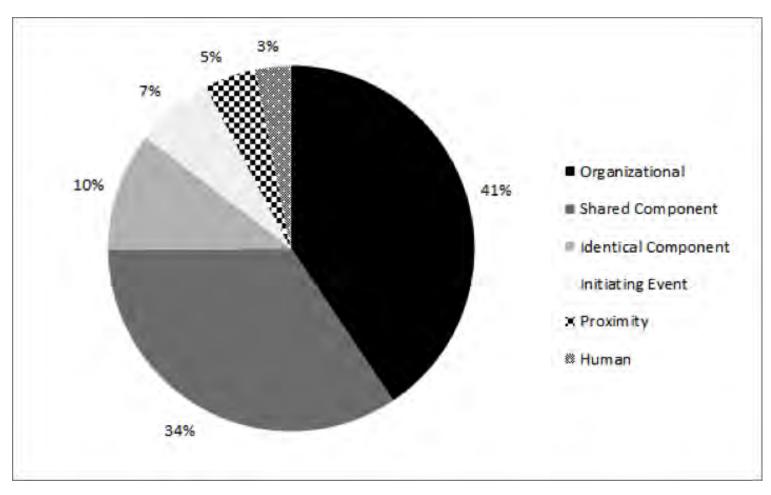
- PRAs performed one reactor at-a-time
- Increased likelihood of a single reactor accident due to interactions with other units ignored
- Impact of a severe accident from one unit on the other units ignored
- Risk metrics CDF and LERF don't capture integrated site risk
- NRC Safety Goals for multi unit / multi-module plants unclear
 - Single reactor PRAs used to justify safety goals conformance
- Essentially all risk-informed regulation applications are based on single unit metrics
 - Risk impacts of multi-unit accidents ignored

Issues with PRA Applications to Multi-Units

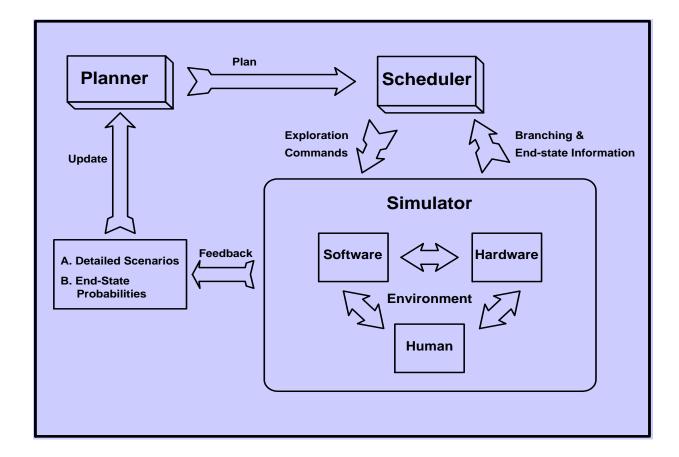


- Lack of experience and methods with multi-reactor PRAs
- Dynamic nature of multi-unit interactions
- Single reactor risk metrics such as CDF and LERF are inadequate to capture integrated risks of multi-unit sites
- PRA treatment of accident management is limited to prevention of severe accidents-- not protection and mitigation
- Impact of site contamination on operator actions not considered in PRAs
- Initiating events and accident progression in each reactor don't consider causal accidents of other units
- Treatment of common cause failures involving components on multi-units not addressed
- Seismic correlation issue already addressed in single reactor PRAs needs to be addressed in multi-unit context
- Operator actions in multi-unit settings are dynamic and different

Past Experiences with Multi-Unit PRAs



- Rudimentary multi-unit Seabrook PRA (mid 1980s) and Byron/Braidwood PRA (late 1990's) has been done
- Modular HTGR PRAs (mid 1990's)
- Multi-Module PRA of SMRs (Ongoing)



Observed LERs Involving Multi-Units

Source: S. Schroer

Source: A. Mosleh

- Modeling system dynamics
- Modeling human interaction and digital control systems
- Capturing uncertainty quantification and sensitivity analysis in the simulation
- Immediate and much needed applications to address multi-unit
 / multi-module SMR PRA

SMR PRA Modeling Considerations/Complexities

- Integrated Design
 - Integrated Steam Generator / Health Management
 - Integrated Control Rod Drive Mechanism
 - Integrated RCP
 - New Containment-RCS Interactions
 - Integrated Pressurizer
- Passive systems
 - > Operability / conditions of operation
 - Failure modes
 - > Thermal/mechanical failure mechanisms (e.g., PTS)
 - > Long-term component/structure degradation

- Multi-Module Risk
 - Direct Dependencies
 - Common initiating events / shared SSCs
 - Shared instrumentation, control, fiber optics, other cables, electric divisions
 - Shared systems (e.g., FPS)
 - Capacity of shared equipment (e.g., batteries)

- Indirect Dependencies
 - Human/organizational Pre-imitating event dependencies
 - Post accident human actions (operators, fire brigade, etc.
 - Common environments (caused by)
 - Natural events
 - Internal events (e.g., SBO)
 - > Internal events external of the system (e.g., Fire)
 - Accident-induced dependencies (for example hydrogen explosion at Unit 3 of Fukushima disabled fire pumps used for seawater injection at Unit 2. Also, fire/explosion at Unit 4 was caused by leakage of hydrogen released from Unit 3 through shared duct-work with Unit 4)

Other SMR PRA Modeling Considerations/Complexities

- Severe accident phenomena
 - Relevance of severe accident phenomena
 - H generation / explosions
 - Containment failure modes
 - Melt-through phenomena
 - Integrity of integrated structures such as steam generators
 - Integrity of instrumentations
- Long-term cooling
 - Capacity of heat sinks (24 hr, 72 hr, or longer accidents)
 - Conditions necessary to maintain long-term cooling

Other SMR PRA Modeling Considerations/Complexities (Cont.)

- HRA
 - Control room crew dynamics
 - Errors of commission
 - Recovery actions / accessibility
- External events
 - Seismic hazard
 - Fragilities of integrated structures
 - Combined external initiators
- Spent fuel pool considerations
 - Interplay with the operating modules
- Low Power & Shutdown Events

What is needed?

Spatial connections within and between units that affect SSCs

- Shared heat sink structure
- Seismic loads for multiple reactor modules
- Critical initiating events, shared connections, identical components, proximity dependencies, human dependencies, and organizational dependencies
- Thermal-hydraulic and severe accident simulation models of the reactor system including support systems
 - Development of discrete dynamic event tree methodology
- Development of examples (e.g., initiating events that affect multiple reactors, such as loss of offsite power, internal flooding, and seismic events)
- Development of a methodology of quantifying the site CDF using a simulation-based dynamically generated scenarios

- Multi-Unit SMR PRAs are very different from conventional plant PRAs
- Traditional PRA methods and data are inadequate
- Significant opportunities exist to combine simulation models with PRA principles to perform multi-unit PRAs and establish basis for multi-unit accident management
- New standards, regulatory guidance, early interactions with the NRC
- Techniques and tools will have major impact in nuclear and possibly other industries as well

