Prognostics and Health Management in Petroleum Structures

Mohammad Modarres

Nicole Y. Kim Eminent Professor Director, Center for Risk and Reliability University of Maryland-College Park

Invited Talk at the 2015 Plant Maintenance & Reliability 6thGlobal Praxis Interactive Technology Workshop

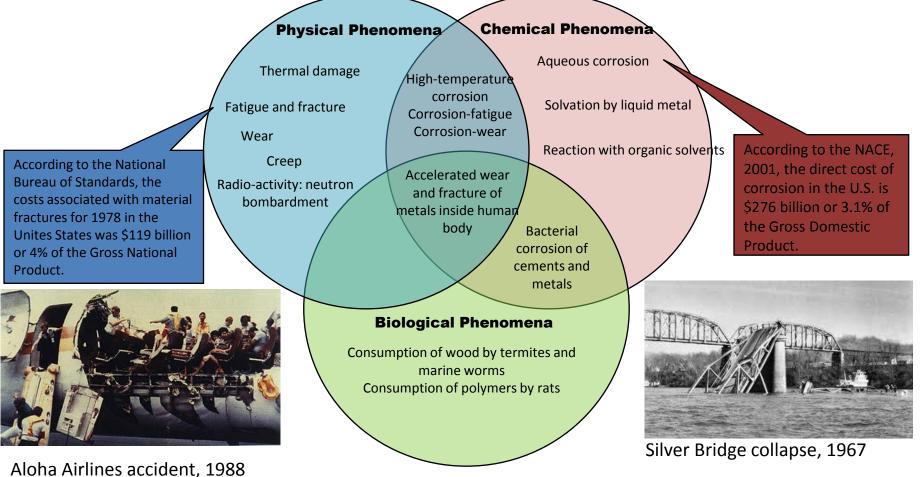
A. JAMES CLARK SCHOOL OF ENGINEERING

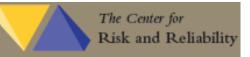
The Center for Risk and Reliability

17 February 2015

Outline of the Talk

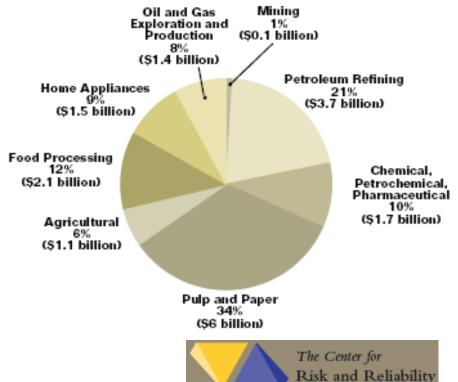
- Center for Risk and Reliability, University of Maryland
- Important Failure Mechanisms
- Examples of PHM
- Applications to the Petroleum Industry
- Conclusions




Areas of Recent Focus at Center for Risk and Reliability (CRR)

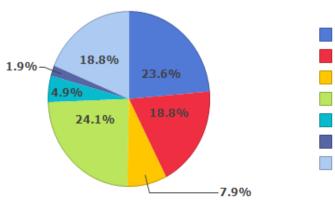
- Probabilistic Physics of failure (PPoF, PHM, ADT, ALT)
 - Corrosion
 - Fatigue
 - Wear
 - Creep
 - Combinations
- PPoF Based Modeling of Structures and Systems
 - Agent-Based Computing
 - Simulations-Based Computing
 - Common Cause Failures
- Probabilistic Risk Assessment and Reliability Analysis
 - Risk Assessment and Management
 - Transportation Risk (CNGs and Pipelines)
 - Small Modular Reactors
 - Failure Data Collection and Analysis (small and large data, machine learning)
 - Modeling Reliability of complex components (Compressors, pumps, MOVs, etc.)

Overview of Failure Mechanisms

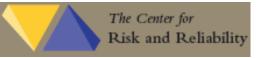


Important Failure Mechanisms in the Petroleum Industry

Failure Mode	Failure inducing agents	Sub-categor <u>ies</u>	Examples
Fatigue	Fluctuating stress/strain Assisted by environment: temperature, humidity, oxidation, corrosion	High-cycle fatigue Low-cycle fatigue Thermal fatigue Impact fatigue Surface fatigue Fretting fatigue Corrosion fatigue Creep fatigue	Airframes, pipelines, bridges, railroad structures, rotating shafts, turbine blades, pumps, bolts, gears, hip joint, welded structures, solder in electronic devices
Corrosion	Chemical or electrochemical reaction with environment Assisted by stress, deformation, abrasion, wear	Direct chemical attack Galvanic corrosion Uniform corrosion Pitting corrosion Erosion corrosion Crevice corrosion Intergranular corrosion Stress corrosion Biological corrosion Hydrogen damage Corrosion fatigue Dealloying corrosion	Pressure vessels, boiler tubes, pumps, compressors, bridges, crude oil storage tanks, airframes, marine structures, bolts, medical devices
Wear	Relative motion between mating surfaces Plastic deformation Assisted by environment: humidity, oxidation, temperature, corrosion	Adhesive wear Abrasive wear	Pipe bends, seals, bearings, gears, disks and tapes, piston rings, nuclear machinery, drills, pump impellers, human teeth and joints
Creep	Plastic deformation due to stress and elevated temperature Assisted by fluctuating stress/strain, corrosion	Creep fatigue Creep corrosion	Boiler super-heaters, petro-chemical furnaces, reactor vessel components, gas turbine blades, aeroengines


Fact About Corrosion in Industries

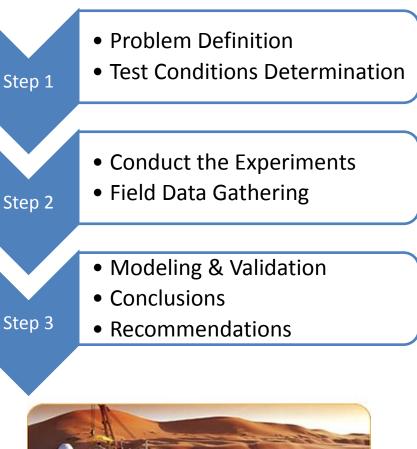
- Corrosion is considered a significant factor in the failure and damage of metals
- Annual direct cost of corrosion in U.S. oil and petrochemical industry= \$6.8 billion
- Mechanistic loads increase damage in the presence of Corrosion
- Pipelines are subject to mechanical stresses and harsh corrosive environments


Fact About Corrosion in Industries (Cont.)

- The 2010 Enbridge Spill in Michigan-U.S. was due to Corrosion-Fatigue (~\$1B cost of clean up so far!).
- Why Mechanistic Failures are Important?
 - Preexisting cracks (pits, dents, weld flaws, cracks initiation due SCC, etc.)
 - Mechanical loads (tensile and cyclic)

CORROSION EXCAVATION DAMAGE INCORRECT OPERATION MAT'L/WELD/EQUIP FAILURE NATURAL FORCE DAMAGE OTHER OUTSIDE FORCE DAMAGE ALL OTHER CAUSES

Source: PHMSA Significant Incidents Files, December 31, 2012


COPYRIGHT © 2015, M. Modarres

Significant Incident Cause Breakdown National, Hazardous Liquid, 1992-2011

UMD Approach to the Petroleum Industry PHM Application

• Define Conditions:

- Understand needs and interests in the oil industry facility integrity management
- Define accelerated test conditions that matches the operating field environment of the targeted facility
- Perform Experiments and Data Gathering:
 - Experiments to accelerate damage on representative materials
 - Analysis of data and associated uncertainties
 - Gather field data
- Develop Models:
 - Select Mathematical Model
 - Model Validation

Types of Corrosion

Stress corrosion

Uniform Attack

Oxidation & reduction occur uniformly over surface.

- Selective Leaching Preferred corrosion of one element/constituent (e.g., Zn from brass (Cu-Zn)).
 - Intergranular Corrosion along grain boundaries, often where special phases exist.

Stress & corrosion work together at crack tips.

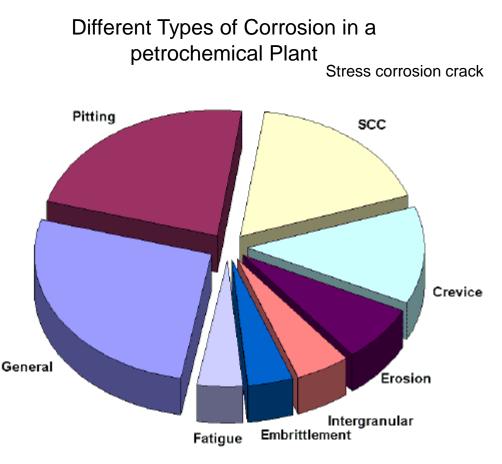
 Galvanic Dissimilar metals are physically joined. The more anodic one corrodes. Zn & Mg very anodic.

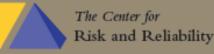
 Erosion-corrosion Break down of passivating layer by erosion (pipe elbows).

> • Pitting Downward propagation of small pits & holes.

Crevice

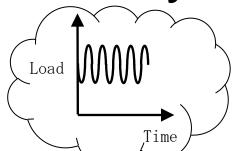
Between two pieces of the same metal. due to concentration difference


(Corrosion and Corrosion Control, H. Uhlig, et. al. 1997)


Accelerated Testing

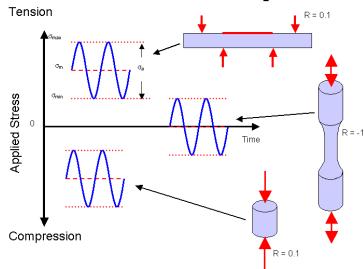
Importance of Corrosion in PHM

- Waste of Material and Energy
- Economical Loss
 - Direct Loss
 - Indirect Loss
 - Shutdown
 - Loss of product
 - Loss of efficiency
 - Product contamination
 - Overdesign
- Environmental Impact/Health



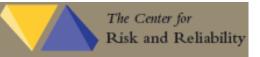
Data from major companied in France (www.corrosion-doctors.org)

Fatigue Failure in Facility Structures and Machinery

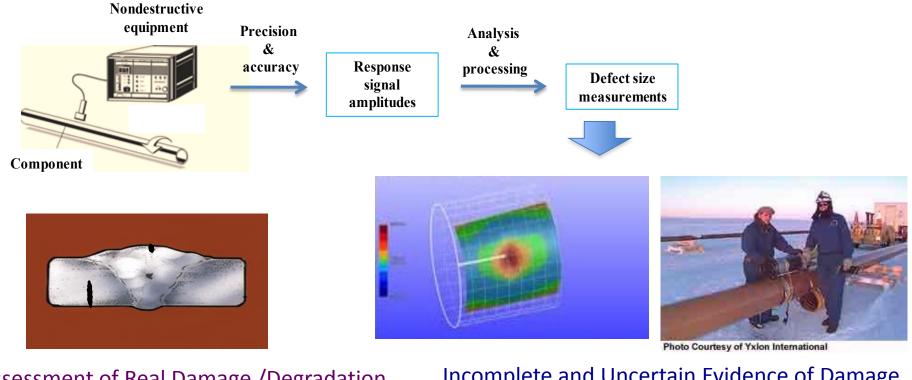


By common usage: *Fatigue* refers to the behavior of materials under the action of repeated stresses or strains, as distinguished from their behavior under monotonic or static stresses or strains.

> The Center for Risk and Reliability


Accelerated Testing

Examples Fatigue Test & Specimens

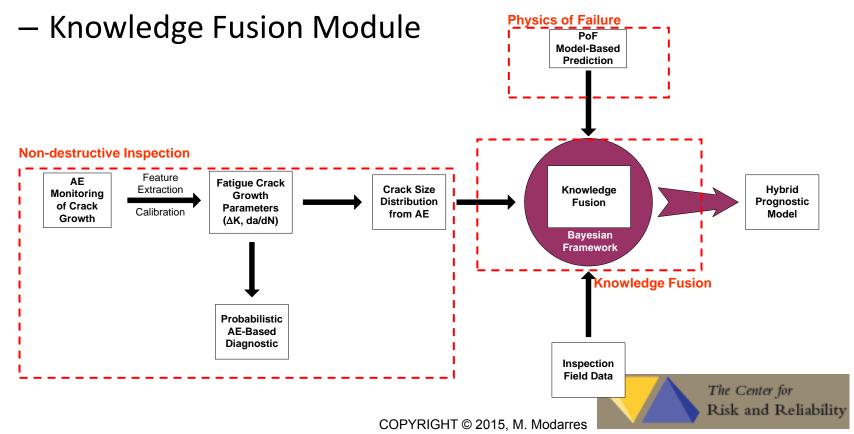


Accelerated Testing

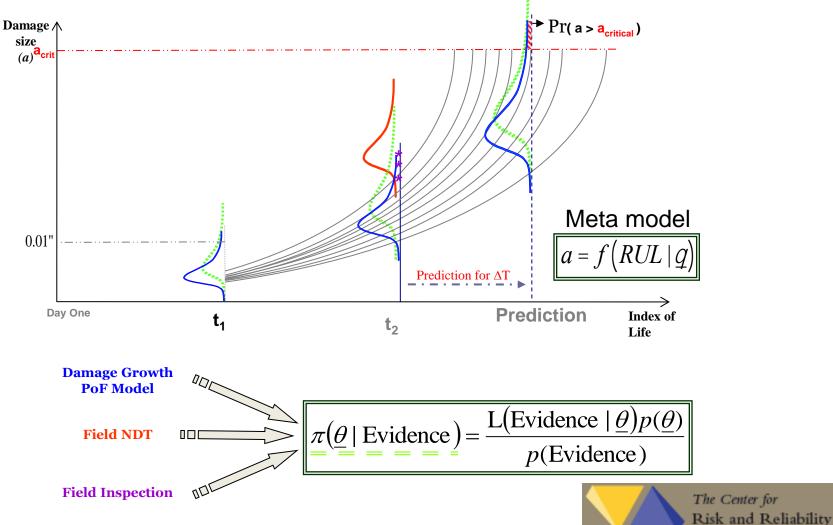
PHM in Oil Industry Considering NDT

Assessment of Real Damage / Degradation

g(ρ)=Real Damage Density Distribution? f(a)=Real Damage Size Distribution?

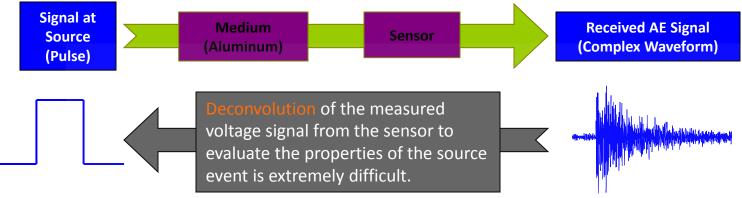

Incomplete and Uncertain Evidence of Damage

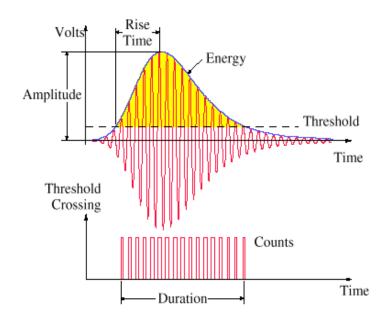
Evidence-Based (NDT-Based Defect/Damage size and density)



Methodology USED

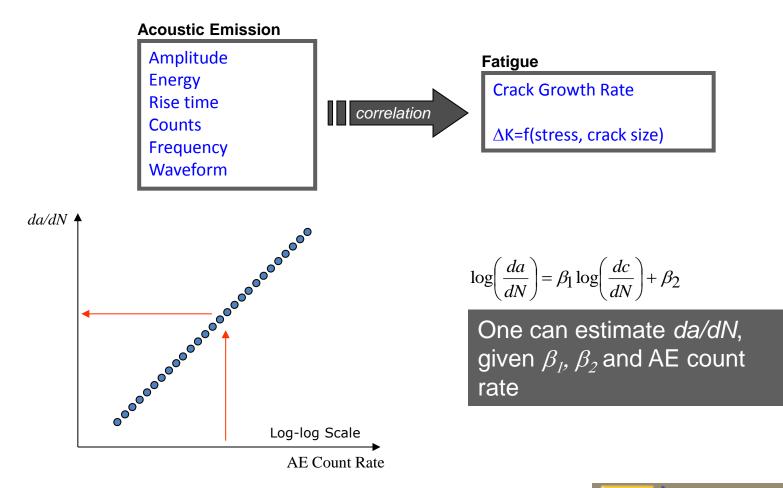
- Hybrid PHM consisting of the following modules:
 - Physics-of-Failure (PoF) Model
 - NDT-based structural integrity assessment

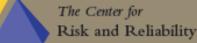

Hybrid PHM Approach



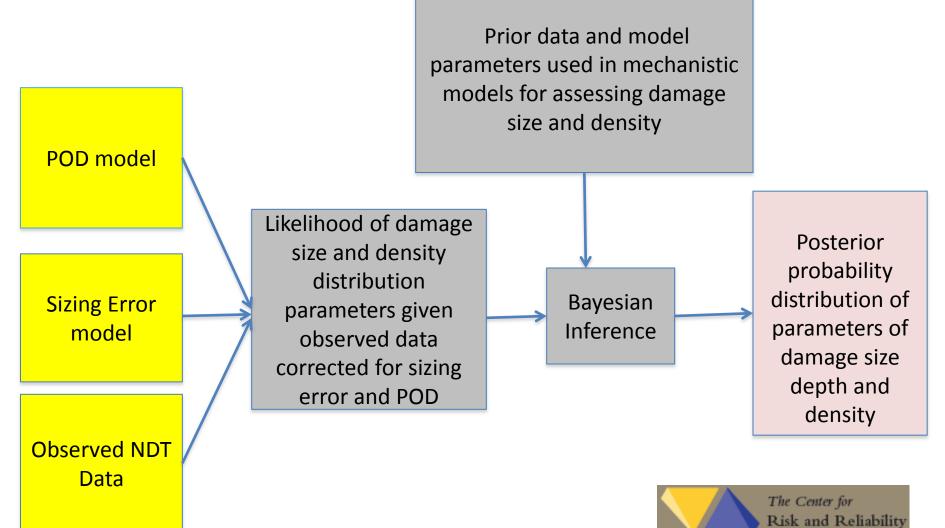
Acoustic Emission Monitoring

AE for Fatigue Prediction

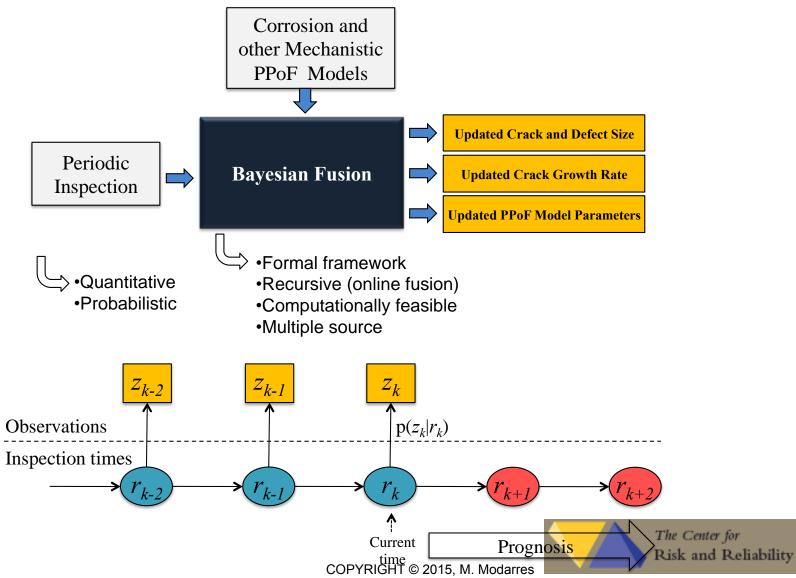



AE Features

- Amplitude
- Energy
- Rise time
- Counts (Threshold crossing)
- Frequency content
- Waveform shape



AE for Fatigue Prediction (Cont.)



Elements of Model Development: Bayesian Approach

Machine Learning and NDT Data Fusion in PHM

Probabilistic Modeling of Failure Mechanisms

DEPARTMENT OF

MECHANICAL ENGINEERING

THE CENTER FOR RISK AND RELIABILITY

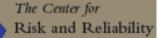
MTS Uniaxial Fatigue Testing Machines

- Two-post and Four-post machines rating at ±100kN in tension or compression under static and cyclic conditions.
- Fatigue Life Assessment Based on Energy Release
- Fatigue Crack Initiation Based on Entropy Generation

Optical Microscopy for Short Fatigue Crack

- 25 to 10X Microscope with C-mount adaptor for the video port. Magnification of 25X to 100X, can be increased to as high as 200X. Simultaneous visual and video viewing.
- Short crack detection in fatigue
- Visualization of crack growth

> Acoustic Emission Technique for Crack Initiation and Growth


- Sensors and amplifiers to collect and amplify the signals, a data acquisition module to perform front-end filtration and record the signals, and a software module to visualize the data and to perform the required analysis such as feature extraction and source location.
- Assessment of crack initiation
- Large crack growth modeling
- Information entropy analysis of AE signals for crack initiation

Heating Chamber for Creep Testing

- Exposure of specimen under controlled heat up to 700°C
- Probabilistic modeling of creep
- Fatigue-creep testing capability

Corrosive Medium Chamber

- Probabilistic corrosion-Fatigue model development in piping
- Probabilistic pitting corrosion in pipes
- Probabilistic stress corrosion in piping

301-40 GOPYRIGHT © 2015 M Modarres 742 USA

Conclusions

- CRR Provides Most Up to Date Methods for PHM in the Petroleum Industry
- Strong Experimental, Model Development and Simulation Approaches to PHM
- Investments in PHM Corresponds to Multiples of Direct and Indirect Returns

Thank you for listening Question?

