

Probabilistic Risk Assessment Model to Study Risk of *E. coli* O157:H7 Contamination in Hard Cheeses

Kristin A. Fretz
Mohammad Modarres
University of Maryland
Center for Technology Risk Studies
December 5, 2005

E. coli O157:H7 Overview

- Serious cause of foodborne illness
 - Annually 62,400 cases, 52 deaths
- Properties of E. coli O157:H7
 - Produces Verocytotoxin (VTEC)
 - Survival and growth factors
 - Symptoms of illness
- Vehicles of transmission
 - Survival in dairy products
 - E. coli O157:H7 outbreaks linked to cheese

Model Objectives

- Adapt probabilistic model-based tools and techniques developed in engineering disciplines to food safety applications
- Apply adapted PRA techniques to cheese making process in order to determine:
 - Risk significant activities/events
 - Control strategies
 - Societal impacts due to hazard exposure
 - Areas for additional data collection/analysis
- Develop software platform to support PRA model

PRA Model Overview

Expanded PRA Model

Production Phase

- Identifies steps in cheese making process
 - Various options for each step
 - Scenario built based on user selections
- Contamination propagated through phase using Multiplicative Factors method
 - Mathematical predictive model
 - Developed by obtaining contamination level at input and output of step

Multiplicative Factors Approach

Transportation Phase

- Identifies steps in transportation and distribution of cheese
- Determine conditions affecting growth of E. coli O157:H7 during transportation phase
- Gompertz model best represents E. coli
 O157:H7 growth behavior in cheese

Public Health Outcomes Phase

- Links E. coli O157:H7 exposure with adverse health outcomes
- Individual outcome and consequences based on health status and number of bacteria consumed

Dose-Response Approach

- Models: Exponential, Beta-Poisson, and Weibull-Gamma
- Dose-response parameters estimated for various data sets
- Uncertainty about which data set provides best estimation of dose-response
 - Analytical Hierarchy Process (AHP) Method
 - Weights alternatives based on criteria resulting in weighted-average parameters

Consequence Analysis

- Types of consequences
- E. coli O157:H7 food outbreak data collected from annual CDC Report and additional reported cases
 - Number illnesses, Hospitalizations, HUS/TTP, and Mortality
- Consequence distributions based on previous E. coli O157:H7 risk assessments

Case Study

Modeled cheddar cheese production

- Initial Contamination: 10 ± 5 CFU/ml raw milk
- Best-case transportation times & temperatures
- 1500 people exposed, Beta-Poisson (AHP)

Risk assessment tool

 Final Contamination, Number III, Population Sensitivity

Risk management tool

Ripening Time, Milk Storage, Milk Treatment

Risk Assessment: Dose & Number III

- Baseline average contamination: 6.8 CFU/g
- Baseline average number of people becoming ill given contamination level: 455

Risk Assessment: Pop. Sensitivity

Mortality Exceedance Probability Given Illness: Susceptible Population

- Number of deaths given contamination level calculated based on population type
 - Average number deaths for normal population: 3.4
 - Average number deaths for susceptible population: 33.6
- Risk assessment tool calculates various other consequences

Risk Management: Ripening Time

- Reduce contamination by lengthening ripening time
 - 75 day (baseline) vs. 150 day
 - 6.8 CFU/g (baseline) vs. 6.5 CFU/g

Risk Management: Milk Storage

Contamination After Production: Storage Temp <5°C

- Reduce contamination by lowering milk storage temperature
 - 5°C<t<8°C (baseline) vs. t<5°C
 - 6.8 CFU/g (baseline) vs. 5.7 CFU/g

Risk Management: Milk Treatment

- Reduce contamination by pasteurization of raw milk
 - Raw Milk (baseline) vs. Pasteurized Milk
 - 6.8 CFU/g (baseline) vs. 3.6 CFU/g

probability of

Risk Management: Milk Treatment

Illness Exceedance Probability Given Dose: Pasteurized Milk

- Pasteurization leads to significant reduction in number of people becoming ill
 - 3 CFU/g decrease in contamination
 - Reduces illness by factor of 100

Risk Management: Multiple Factors

Contamination After Production: Multiple Factors

- Reduce contamination by several small changes
 - 75 day (baseline) vs. 150 day
 - 5°C<t<8°C (baseline) vs. t<5°C
 - Raw Milk (baseline) vs. Sub-Pasteurization
 - 6.8 CFU/g (baseline) vs. 5.1 CFU/g

Conclusions

- Other case studies
- PRA model describes E. coli O157:H7
 behavior from production, transportation,
 and consumption to predict risk of human
 exposure
 - Data Uncertainty
 - Model to Model Variability
- Allows risk managers to estimate risk, assess societal impacts, and identify control strategies