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Topics Covered

• Why MU-MUPRA?
• MU-PRA Risk Metrics
• Unit-to-Unit Dependency Modeling
• MU-PRA Methodology
• A Simple Seismic PRA and Impact of MU-PRA
• Implications of MU-PRA on USNRC Safety Goals (QHOs)
• Experimental-Based (non-Parametric) Dependency Modeling
• Conclusions and Future Directions
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Multi-Unit US and Global NPP Sites
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Why MU-PRA? : Unit-to-Unit Dependencies are significant

• Schroer (Dennis) used a fishbone categorization to group
LERs affecting multi-units at the U.S. sites 

Same%design%
(principles)%
Same%hardware%
Same%func5on%
Same%so7ware%

%

Same%installa5on%staff%
Same%maintenance%staff%
Same%operators%

%

Same%direct%IE%
Same%condi5onal%IE%

Same%support%SSC%
Same%interface%
Same%environment%
%
%

Same%room%
Same%coupling%structures%
Same%coupling%mechanisms%

Same%procedures%
Same%tech%specs%

%

Fig.%3%Dependent%Categories%

IMPORTANT FINDINGS
• 9% of ALL LERs

reported affected two
or more units

• Most involving
Organizational and
Shared Connection
types of dependencies

Source: Schroer, S. An Event Classification Schema For Considering Site Risk In A Multi-Unit Nuclear Power Plant 
Probabilistic Risk Assessment, University of Maryland, Master of Science Thesis in Reliability Engineering, 2012. 
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Multi-Unit CDF Metrics

• Three Possible MU-CDF Definitions:
• CDF of one unit including consideration of all states

of the other units (marginal CDF Definition)*

• Frequency of at least one or more core damages 
(total Site CDF Definition)

• CDF for multiple core damages (concurrent CDF 
Definition) 

* Single unit PRAs include scenarios exclusive to one unit, assuming others will be unaffected
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Multi-Unit CDF Metrics (Cont.)

A multi-unit PRA (MUPRA) analysis for any of the 
proposed CDF metric requires assessment of the 
inter- and intra-unit dependencies 
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Dependent Failures in Multi-Units: The 
Critical Element of a Successful MU-PRA

Classes of 
Dependencies:
• Parametric
• Causal
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Estimating Dependent Failure Probabilities 
in MUPRA

Identical and Causal (dissimilar dependent events)
Dependent Failure Methods Proposed or Used:

• Parametric
• Probabilistic Physics-of-Failure
• Bayesian Networks
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Parametric Assessment of Conditional 
Probability of Failures

• Parametric analysis of MU dependencies
• LER Data of 2000-2011 of multi-unit sites

categorized by their root-causes and effects
• Detailed Excel File of the LER Analysis

Developed
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Parametric Assessment of Conditional 
Probability of Failures (Cont.)

COPYRIGHT © 2016, M. Modarres



12

Parametric Assessment of Conditional 
Probability of Failures (Cont.)

• Site-to-Site variations
also evaluated

• Bayesian estimate of
conditional dependent
failure probabilities

• LER data used as
evidence with
uninformative priors

𝑝̂#$ =
𝑛#$
𝑁

where 𝒏𝒊𝒋 is the total number 
of observed events of type j 
(such as initiating event) 
involving occurrences in i 
reactor units (i= 2, or 3 in U.S.) 
due to the total number of LER 
events of type-j events 
observed in N total events that 
occurred in the MU sites. 
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Case Study: 
A Simple MU Seismic PRA of Advanced 

Reactor Units

COPYRIGHT © 2016, M. Modarres



14

Objective and Methodology

q Objectives
• Hypothetical site consisting of two advanced reactor units
• Seismically induced small LOCA
• Identify the MU-CD scenarios due to internal events with seismic IE

q Methodology: parametrical-based using SAPHIRE.
• Use MU dependent events from the 2000-2011 LERs
• Seismic IE with equally-correlated assumption between SSC capacities

q Risk Metrics
• Site CDF (i.e., at least one CD)
• Multi-Unit CDF (i.e., concurrent CDs)
• Marginal Single-Unit CDF
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Seismic Hazard Curve and Initiating 
Event Frequency
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q The Frequency of Seismically induced SLOCA
• Annual frequency exceedance (e.g., 4.78E-5 for PGA=0.5g)
• Conditional probability of SLOCA (e.g., 0.089 for PGA=0.5g)
• Frequency of seismic-induce SLOCA (e.g., 4.25E-6 for PGA=0.5g)

NUREG/CR-4840, November 1990 
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Preliminary Case Study Results (Seismic Event) 
– Site CDF
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Preliminary Case Study Results (Seismic Event) 
– Concurrent CDF
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Budnitz, R.J., G.S. Hardy, D.L. Moore and, M.K.Ravindra, Correlation of Seismic Performance in Similar SSCs 
Final Report Draft, Lawrence Berkeley National Laboratory, March 2015 (Under Review)
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Preliminary Case Study Results (Seismic Event) 
– Marginal CDF

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Co
nt

rib
ut

io
n 

of
 D

ep
en

de
nc

e 

Acceleration (g)

Contribution of Dependence to 
Single-Unit CCDP/Fragility

Dependence Contribution (0.3)

Dependence Contribution (0.5)

Dependence Contribution (0.8)

Dependence Contribution (1)

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Co
nd

iti
on

al
 C

or
e 

D
am

ag
e 

Pr
ob

ab
ili

ty

Acceleration (g)

Marginal Single-Unit CDF

Single-Unit CCDP (0)

Single-Unit CCDP (0.3)

Single-Unit CCDP (0.5)

Single-Unit CCDP (0.8)

Single-Unit CCDP (1)

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Co
nd

iti
on

al
 C

or
e 

D
am

ag
e 

Pr
ob

ab
ili

ty

Acceleration (g)

Marginal Single-Unit 
CCDP/Fragility

Single-Unit CCDP (0)

Single-Unit CCDP (0.3)

Single-Unit CCDP (0.5)

Single-Unit CCDP (0.8)

Single-Unit CCDP (1)

COPYRIGHT © 2016, M. Modarres



19

Preliminary Case Study Results (Seismic Event) 
– Contribution of Concurrent CDF to Site CDF
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Observations From the Seismic Event 

• The seismicly-induced dependencies are significant in “site” risk,
and show extremely high contributions to “concurrent” risk too

• With increasing ground motions, the probability of concurrent CDs
would approach “site”  CDs

• The middle region of site fragility curve is the most sensitive to
the potential dependencies, while it is less sensitive to both the
low end and high end of site fragility curve

• The sensitivity studies of correlations show that the main sensitive
region would be shifted to the lower end of site fragility curve with
potentially higher dependencies

• The impact of perfect dependency assumption is too conservative
for “site” risk and marginal CD risk, but not for assessing
concurrent risk
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MU Risk Implications on Safety Goals 
Quantitative Health Objectives (QHOs)

• NRC qualitative safety goals and QHOs still
applicable to MU sites.
ØPrompt fatality goal remains more restrictive than the 

latent cancer fatality goal in multi-unit releases
• MU risk should be below the QHOs for both

prompt and latent fatalities
• Surrogates for QHOs (CDF, LRF and LERF) for

site risk are assessed and compared to the
goals: 10-4, 10-6, and 10-5, Respectively. But not
used in this study
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Multi-Unit Accident Contributions to QHOs

• To evaluate the implications of the QHOs, Level 3 
consequence analyses was performed at two 
representative U.S. NPP sites using SORCA study.
ØPeach Bottom Atomic Power Station Unit 2 and 3
ØSurry Power Station Unit 1 and 2

RESEARCH 
BOUNDARY SOARCA PILOT STUDY 

STEP 2a 
Estimate single-unit 
accident scenario 

frequencies STEP 1 
Select and model 

important single-unit 
accident scenarios STEP 2b 

Estimate single-unit 
accident scenario 

consequences 

STEP 3 
Estimate unadjusted 
single-unit accident 

scenario risk 

STEP 4b 
Estimate adjusted 

single-unit accident 
scenario risk 

STEP 4a 
Estimate single-unit 

frequency adjustment 
factor 

 
NUREG-1150 

STUDY 

STEP 5 
Estimate total single-

unit accident risk 
 

Proceed to STEP 6 
for two-unit 

accident scenario 
calculations 
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Multi-Unit Accident Contributions to QHOs 
(Cont.)
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Policy Alternatives

• Option 1: Status Quo
ØOnly single-unit accident contributions included in 

estimating risk metrics for comparison to QHOs

• Option 2: Expansion in Scope of Safety Goal Policy
ØContribution from both single-unit and multi-unit 

accident included in estimating risk metrics for 
comparison to QHOs. That is considering “Marginal” Risk 

• Option 3: Expansion in Scope of Safety Goal Policy
ØBesides the ones in Option 1 and 2, single-unit exclusive 

accident scenarios from other units included. That is 
considering “site” risk
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MU Risk QHO Results 

• Figures of Merit 1:Change in the mean value of QHO risk
metrics, comparing Option 2 relative to Option 1

• Figures of Merit 2: Change in the mean value of QHO risk
metrics, comparing Option 3 relative to Option 1

• The contribution from the two-unit accident scenarios
(assuming 10% unit-to-unit dependency) results i

Option 1 Option 2

Average Individual Early 
Fatality Risk (1 mi)

1.8 6.36E+05 3.60E+05

Population-Weighted Latent 
Cancer Fatality Risk (0-10 mi)

1.1 6.69E+02 5.83E+02

Average Individual Early 
Fatality Risk (1 mi)

1.2 2.35E+04 1.96E+04

Population-Weighted Latent 
Cancer Fatality Risk (0-10 mi)

1.2 4.30E+02 3.63E+02

a The FOM represents the fractional change in risk results that occurs when the contributions from multi-
unit accidents to each QHO risk metric are included. The FOM is calculated as the ratio of the mean value  
for each QHO risk metric when comparing Option 2 results to Option 1 results.

b The QHO margin represents the relative distance between the QHO and the mean value of the 
corresponding risk metric. The QHO margin is calculated as the ratio of the QHO to the value of the 
corresponding QHO risk metric.

QHO Marginb
FOMaSafety Goal QHO Risk Metric

Representative BWR (Peach Bottom) Analysis

Representative PWR (Surry) Analysis
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QHO Sensitivity to Overall Plant Dependency
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Early fatality risk for the representative BWR site is more 
sensitive to variation in assumed inter-unit dependence 
than early fatality risk for the representative PWR site
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QHO Sensitivity to Release Timing Offset
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QHO Sensitivity to Release Timing Offset  
(Cont.)
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Synergistic effects of the timing offset in concurrent release 
scenarios and other factors such as variability in weather conditions 
and protective actions taken to reduce radiological dose play a role. 
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Results of Sensitivity Analysis

• Variation of the assumed inter-unit dependence from 0%
to 100% reinforced conclusions from base case analysis.

Including the contributions from MU accidents to safety goal QHO metrics 
increase risk estimates, but still meet the safety goals with wide margins

• Variation of the timing offset between releases from MUs
assuming 10% inter-unit dependence reinforced conclusions
of base case analysis. Also,
Ø Early fatality risk is more sensitive to release timing.
Ø Increasing the delay between concurrent accidents may cause latent

cancer fatality risk to increase for some scenarios!
Severe accident mitigation measures that serve to delay more 
rapidly progressing concurrent accident scenarios in a site can lead 
to significant reductions in multi-unit early fatality risk.
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• Experimental and Physics-Based
Dependency Modeling Research

• Funding for the Experimental Effort is
Provided by the Center for Risk and 

Reliability 
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Outline

q Experimental Setup & Current State
q Dynamic Bayesian Network (DBN) Modeling
q Dynamic State Monitoring

• Multi-Sensor Measurement
• Multi-Sensor Feature Extraction

q DBN Inference and Sensor Fusion
• Particle Filtering

q Measure of the Strength of Dependency
• Linear Dependency Measurement
• Non-Linear Dependency Measurement
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Flow In

Flow Out

AE-1

AE-2

AE-3 Flow Rate

Differential Pressure

Conductivity

Thermocouple 1

Thermocouple 2

Thermocouple 3

Thermocouple 4

Thermocouple 5

3 Single-Axis Accelerometers

Experimental Setup & Current State

Working Conditions
• Testing chamber (
around 60°C)

• Pump (seawater at
around 60°C )

DC Current DC Voltage

Key Performance Indicators of Pump
• Flow rate of fluid
• Differential pressure between suction and discharge
• Power absorbed (voltage & current of electric motor)
• Conductivity of fluid
• Temperature

Dynamic State Monitoring using 
Non-Destructive Technique
• Acoustic Emission (AE) Monitoring
• Vibration Monitoring

Thermocouple 6

Thermocouple 7
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Experimental Setup & Current State 
(Cont.)

Schematics of Pump Condition Monitoring System

• Customized testing bed: testing
loop, heating loop, and salt
spray loop

• Advanced sensing system with
18 sensors

• Common-cause dependencies
are established by the shared
inter-environmental factors and
intra-environmental factors

• Causal-dependencies are
attributed to the system
proximity and functions, which
can be modeled by coupling of
underlying failure mechanisms
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Experiment Setup & Current State 
(Cont.)

Current State: 
The first pump test has been completed (12/20/2015 ~ 03/12/2016): 83 days in total
The second pump test  is ongoing (05/24/2016 ~ Present): around 180 days so far

Testing Pump Customized Testing Chamber AE Monitoring
Data Acquisition & 
Vibration Monitoring
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Dynamic Bayesian Network: Modeling 
Dependencies
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Category Multi-Sensor 
Data

High-Bandwidth 
(1MHz) Acoustic Emission

Median-Bandwidth 
(10240 Hz) Vibration

Low- Bandwidth 
(0.5 Hz)

Flow Rate

Differential Pressure

DC Voltage

DC Current
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q Measurements:
• Flow rate, Differential Pressure, Current, Voltage

q Feature Construction
• The strategy is to monitor the distribution of efficiency overtime,

looking for shifts in the mean values or any other features of
possible defects.

• Feature vector: extracted statistical features (Mean value , Peak
to Peak value, Root Mean Square (RMS) , Standard Deviation,
Crest Factor, Shape Factor, Mean Square Frequency)

q Degradation Index Construction
• Mahalanobis distance based detection: compare new

observations with as baseline of health condition

Low- Bandwidth Signal: Efficiency

Pump 
Performance ( 

Efficiency)

Flow Rate

Differential 
Pressure

DC Current

DC Voltage

Power Output Power Input

𝜂 =
𝐷𝑃 ∗ 𝐹𝑅
𝑉 ∗ 𝐼
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Median-Bandwidth: Vibration Signal

q Measurements: Vibration (from three single-axial accelerometers)
q Feature Construction

• Segment the data with a certain time window (i.e., each minute)
• Transform each segment into frequency spectrum with Fast Fourier transform
• Identify the frequency band of interest according to domain knowledge and/or

experimental data (i.e., six bands identified)
• Calculate the RMS or Energy of each frequency band around each interested

frequency
• Construct the feature vector with the calculated RMS of each band with respective

to the three directions respectively
q Degradation Index Construction

• Mahalanobis distance based detection: compare new observations with as
baseline of health condition
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High-Bandwidth: Acoustic Emission 
Signal

q Measurements:
• Acoustic Emission (from three AE sensors attached to

pump inlet, outlet, and electric motor)
q Feature Construction

• Extract the Energy, Absolut Energy and RMS features from
the AE signals

• All these three features are highly correlated
• Construct the feature vector using the extracted RMS of

each AE sensor
q Degradation Index Construction

• Mahalanobis distance based detection: compare new
observations with as baseline of health condition
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Compare the Two Pumps

Pump1

Pump2

Efficiency
Acoustic 
EmissionVibration
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Empirical Mode Decomposition (EMD) 
Based Signal De-noising and De-trending

q EMD can be applied to improve the prediction precision, since the
data is not smooth.

q The key idea of EMD is that any complex signals consists of some
different, simple, non-sine function component signals. The
decomposition of one-dimensional signal x(t) can be displayed as:

q The residual element includes the lowest frequency component
which indicates the trend of the signal.
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Compare the Trend of Two Pumps

Pump1

Pump2

Efficiency Acoustic 
EmissionVibration
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Health Definition and Insights

• The degradation process is complex involving multiple
underlying faults

• The run-in and healthy period are selected as 240 hours

• Objective: investigate the strength of dependencies
along the degradation evolution

• Preliminary Analysis: 240~ 1240 hours
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• Capable of handling nonlinear dynamics and of dealing
with non-Gaussian noises at no further computational or
design expenses

• It is a Sequential Monte Carlo-based computational tool
particularly useful for Bayesian-framed prognostics

• Implements Bayesian recursive estimation process to infer
variables of a dynamic system based on noisy and
uncertain observations

• Sensor data integration/fusion and inference in DBN

Particle Filtering as an Inference and 
Data Fusion Tool for DBN
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q The unknown of interest is the state of the system (𝑥<)
• Stochastic state process model:

	𝑥< = 𝑓 𝑥<-., 𝜔< 	→ 𝑃 𝑥< 𝑥<-.)
• Probabilistic measurement model:

𝑦< = ℎ 𝑥<, 𝑣< → 𝑃 𝑦< 𝑥<)
• The goal is to find:

𝑃 𝑥< 𝑦.:<
Based on Bayesian framework:

𝑃 𝑥< 𝑦.:< =
𝑃 𝑦< 𝑥<)𝑃 𝑥< 𝑦.:<-.) 

𝑃 𝑦< 𝑦<-.) 
Where the prior and normalizing factor are:

𝑃 𝑥< 𝑦.:<-.) = F𝑃 𝑥< 𝑥<-.)𝑃 𝑥<-. 𝑦.:<-.)𝑑𝑥<-.

�

�

𝑃 𝑦< 𝑦<-.) = F𝑃 𝑦< 𝑥<)𝑃 𝑥< 𝑦.:<-.)𝑑𝑥<

�

�

Recursive Bayesian Estimation for PF 
inside DBN

𝑦<-. 𝑦<

𝑥<𝑥<-. 𝑥<I.

Key idea of PF is to 
represent the required 
posterior density 
function 𝑃 𝑥< 𝑦.:< by a 
set of random samples 
𝑥(#) with associated 

weights 𝑤(#)

In general, no 
analytical 

solution exists
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Degradation Dynamics
Pump1 Pump2
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Measure of the Strength of Dependency

q Linear Dependence Measurement
• Pearson Correlation

q Non-Linear Dependence Measurement
• Rank Based: Spearman’s Rank Correlation, Kendall Rank

Correlation
• Distance Based: Distance Correlation
• Mutual Information Based: Maximum Information

Coefficient (MIC)
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Strength of Dependencies
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Smoothed Strength of Dependencies
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Trend of Strength of Dependencies
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Conclusions

• Multi-unit accidents are important contributors to site risks
• Parametric MUPRA is useful: LER a starting point
• Causal dependence modeling needs further research
• Unit-to-unit causal events are significant in external events
• Site-level surrogates to latent cancer and prompt fatality

QHOs need better definition in the MUPRA context
• Contribution from MU scenarios reduce margin to QHOs
• Seismic event hazard dependency research a possible path

to developing dependencies in unit response and fragilities
• Research on economic and societal disruption risks

quantitatively monetized a critical addition to the QHOs

COPYRIGHT © 2016, M. Modarres



52

Conclusions (Cont.)

• Framework for degradation assessment based on multi-
sensor data fusion
• Based on Dynamic Bayesian Network
• Particle Filtering used for inference in DBN

• It allows for quantification of strength of dependence in
multi-unit systems
• Linear and non-linear dependence metrics

• Dependencies trends are worrisome as units age

• Grant Funding For this Research the US NRC is Highly
Appreciated
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