Improvements Needed in Nuclear Power Plant Probabilistic Risk Assessments: Lessons Learned from Fukushima

Mohammad Modarres Professor of Nuclear Engineering Department of Mechanical Engineering University of Maryland

DECEMBER 8, 2011 Invited Talk at the NUCLEAR POWER SAFETY 2011 December 8 – 9, 2011 • Washington Marriott Wardman Park Hotel •

Washington DC • USA

Copyright 2012 by M. Modarres

PRESENTATION OVERVIEW

- I. A Brief Look at the Fukushima Daiichi Accident
- II. PRA Implications considering Fukushima Daiichi
- **III.** Concluding Remarks

Nuclear Energy in the US

- Currently 104 operable commercial nuclear reactors
- About 20% of the Nation's total electricity supply by nuclear power generation
- Public Opinion Begins To Recover
 - 2009: 64% Favorability
 - April 2011: 46%
 - July 2011: 50% (66% among opinion leaders)
- 81% agree U.S. should learn from Japan and license new plants rather than stopping progress entirely

Nuclear Generation, 2010 Top 10 Countries - 2,229 Billion Kilowatthours

Source: International Atomic Energy Agency, Power Reactor Information System File

Source: Luntz Global

Nuclear Power Plants in Japan

Fukushima Daiichi Nuclear Power Plant

Boiling Water Reactor Plant Design

Building structure

- Concrete Building
- Steel-framed Service Floor

Pear-shaped Dry-Well

Torus-shaped Wet-Well

Accident Progression

- Positive and negative aspects of depressurizing the containment
 - Removes energy from the reactor building (only way left)
 - Reducing the pressure to ~4 bar
 - Release of small amounts of Aerosols (Iodine, Cesium ~0.1%)
 - Release of all noble gases
 - Release of hydrogen
- Gas was released into the reactor service floor
 - Hydrogen is flammable

Hydrogen Explosion at Units 3&4

- Unit 1 und 3
 - Hydrogen burn inside the reactor service floor
 - Destruction of the steel-frame roof
 - Reinforced concrete reactor building seems undamaged
 - Spectacular but minor safety relevant

Aerial View of Units 1~4

Design Basis Against Tsunami

- At Fukushima Daiichi, countermeasures for tsunamis had been established with a design basis height of 5.7 m above the lowest Osaka Bay water level.
- As additional safety margin, the ground level had been set to as + 10 m.

Critical Safety Implications of Fukushima Events

- Concurrent Events and Common Cause Failures
 - Great East Japan Earthquake followed by tsunami (50 minutes later)
 - Earthquake 9.0 vs design 8.2
 - Tsunami wave 14 m vs design 5.7 m
 - ♦ Maximum tsunami height 38.9 m in Aneyoshi, Miyako
 - Lost offsite power for Units 1-6 due to earthquake
 - Units 1-3 in power operation; Units 4-6 in shutdown
 - All 12 <u>diesel generators</u> in service for Units 1-6 (1 DG for Unit 6 in maintenance) all lost due to <u>tsunami</u>
- Simultaneous Damages to the Multiunit Site
 - Hydrogen explosions at Units 1, 3 and 4
 - Melting of multiple reactor cores (i.e., Units 1, 2 and 3) and spent fuels (i.e., Unit 4)

II. PRA Implications Considering Fukushima

Concept of Accident Sequence in PRA

IE = *Initiating Event; HW* = *Hardware; SW* = *Software; HE* = *Human Error; NR* = *Non-Recovery;*

Accident Causation from a PRA Perspective

HTO Perspective

Regulation

Accident Causation from an HTO Perspective

Weaknesses in HTO Elements

Element	Weakness in HTO Elements	Remarks on Global Status
of HTO	as Revealed by the Fukushima Accident	
Н	o Inappropriate definition of design basis o Improper analysis of plant risk (e.g., underestimation of external events risk, less emphasis on concurrent events and site risk)	Globally was the case prior to the Fukushima accident
т	o Lack of sufficient equipment to cope with extreme events simultaneously affecting the whole site o Lack of plant emergency guidelines for extreme site events (e.g., as caused by natural disasters)	Globally was the case except the US where post 9/11 mitigative measures are already in place (e.g., Extensive Damage Mitigation Guidelines, portable pumps)
0	o Lack of emergency management capability for multiunit events	Globally was the case prior to the Fukushima accident except the US wherethe emergency management capability has been considerably enhanced since the 9/11 terrorist attack

US Response to Fukushima Event

- Carried out Special Inspection of All 104 Reactor Units in May
 - Assessed licensee's capability to mitigate conditions that result from beyond design basis events
 - Testing of active and passive equipment specifically designated for B.5.b (i.e., post-9/11 mitigative measures) or SAMG (Severe Accident Management Guidelines) mitigation such as the portable B.5.b diesel driven pump, B.5.b auxiliary equipment such as adapters and hoses, and the site fire engine
 - Verified that procedures are in place and can be executed (e.g., walkdowns, demonstrations, tests, etc.); adequacy of training and qualifications of operators and support staff
 - Inspection reports for each unit publicly available
- Near-Term (i.e., 90-Day) and Longer-Term NRC Task Forces
 - 34 recommendations; 12 orders, 7 proposed rules, 15 NRC staff and long-term recommendations

PRA Implication: Modeling Issues

- Multi-Module Risk
 - Hard dependencies
 - ♦ Common initiating events / shared SSCs
 - ♦ Shared instrumentation, control, other cables, electric divisions
 - \diamond Shared systems (e.g., FPS)
 - ♦ Capacity of shared equipment (e.g., batteries)

PRA Implication: Modeling Issues (Cont.)

- Multi-Module Risk (Cont.)

- Soft Dependencies
 - > Human/organizational Pre-imitating event dependencies
 - > Post accident human actions (operators, fire brigade, etc.

Common environments (caused by)

- Natural events
- Internal events (e.g., SBO)
- Internal events external to the system (e.g., Fire)
- Accident-induced dependencies (for example hydrogen explosion at Unit 3 of Fukushima disabled fire pumps used for seawater injection at Unit 2. Also, fire/explosion at Unit 4 was caused by leakage of hydrogen released from Unit 3 through shared duct-work with Unit 4)

PRA Implication: Modeling Issues (Cont.)

Severe accident phenomena

- Relevance of severe accident phenomena
 - \diamond H generation / explosions
 - ♦ Containment failure modes
 - ♦ Integrity of instrumentations
- Long-term cooling
 - Capacity of heat sinks (24 hr, 72 hr, or longer accidents)
 - > Conditions necessary to maintain long-term cooling

PRA Implication: Modeling Issues (Cont.)

- HRA
 - Multi-Unit control room crew dynamics
 - Errors of commission
 - Recovery actions / accessibility
- External events
 - Consideration of seismic hazard
 - Fragilities of integrated structures
 - Combined external initiators
- Spent fuel pool considerations
 - Interplay with the operating modules

PRA Implication: Policy / Regulatory Issues

- CDF of site more appropriate
- LERF vs. LRF
- Method for SSC classification
 - RAW/FV measures
 - F-C curves

Concluding Remarks

- Traditional PRA methods should be improved
- More research needed to develop models
- Reliability tests may be necessary to develop fragility data
- New standards, regulatory guidance needed