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FRAMEWORK FOR MODELING FAILURE

S CESS

Capacity

Challenge
(e.g, Strength, Endurance,

(e.g, Btress and Darnage)

Capadty = Challenge

and Tolerance)

Falure

Adwerse Conditions
(e.g, Induced Internally or Extemally
by Designers, Enwronment, and Users)
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STRESS-STRENGTH MODEL

otatistical Distribution

of Stress
otatistical Distribution
/ of Strength
> Time {aging)
Stress -
Distribution o
Probability of Failure ; Distribution
of Strength
Examples: )
+ Conditional containment failure probability T Praohahility
under severe accident loads of Failure

« Seismic failure analysis of structures
Assumption: No permanent damage due to application of stress

Implications
+ Aging shifts the scale and shape parameters of stress and strength distributions
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Damage

DAMAGE-ENDURANCE MODEL

Eail Endurance Limit:
t aliures / mean and bounds

Damage
accumulation

Time to Failure
//k,:’// Distribution

1 . I Time

xamples: Endurance
+ Fatigue corrosion cracking and growth ti Lirmnit

in piping and components TF
+ Vessel, piping and other structural corrosion I
+ Wear in Key components, pump seals and bearing Time
Assumption: Permanent damage occurs due to applied stresses and loads
Implication:

+ Not used to model life of components and structures (favored by several industries)
+ Engineering-based models of damage accumulation needed
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System Performance or

PERFORMANCE-REQUIREMENT MODEL

+ Design Margin or
performance

m ____# Conditional
= Iq—__—___“——* i A i Requirement Bounds
E Performance i i o i i
- Degradation i VAN i Time to Failure

I I i i i
ﬂ i i ii | i Distribution
7 1 —+—t 1 . -
Time

Examples:
+ Degradation of safety margin
+ System success criteria

Assumption: Aging and operational changes
lead to degradation of performance and safety
margin

Implication:

+ Qverly conservation safety margins can be relieved

+ Need advances in understanding of degradation and uncertainties

Performance
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ACCELERATED LIFE TEST APPROACH

S, > 5§, > Stress at Use level

Accelerated
Life Test (ALT)
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ALT MODELING

Component Life Estimation
(I extrapolation to the use level)

Life ,

ol

Component
Life estimation
(b Accelerated life test data)

/

/

/

Ap
Ly & ‘h“"f.ﬁbn ~
ey

A 90%

e 50%
10%
-
Use Condition ?1 g EIJ Stress
ALT Conditions
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FAILURE MECHANISMS AND
ACCELERATION STRESSES

Wearout Failure Mechanisms

Acceleration Stresses

Fatigue crack initation

Mechanical stress/strain range, Cyelic temperature range, Frequency

Fatigue crack propagation Mechanical stress range, Cyclic temperature range, Frequency
Creep Mechanical stress, Temperature
YWy ar Contact force, Belative sliding velocity
Diffusion Temperature, Concentration gradient
|nterdiffusion Temperature
Cormsion Temperature, Eelative humidity
Electromigration Current density, Temperature, Temperature gradiert
Dendntic growth \oltage differential
FEadiation damage Intensity of radiation
Surface charge spreading Temperature
=low trapping Temperature

Siress comosion

Mechanical stress, Temperature, Eelatve hurmidity
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EXAMPLE: SYSTEM LIFE MODEL

Pump Failure

E:] Component Level
|

meal Failure | Bearing Failure |Lotor Failure | . |[Fotor Failure

Erh Failure Mechanisms Level
|

= Wear slurface Fatigue Cotrosion
system

Reliability

Modeling
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JOURNAL BEARING LUBRICATION REGIMES

« Hydrodynamic Miec-Film
lubrication is referred to j-ubrication
as stable lubrication

| Hydrodynamic
| |_ubrication
|

« Mixed-film Iubrication is
unstable

Friction Factor

Boundary Lubrication

« Suppose (most often is
the case) bearings
works in mixed-film and

-

bou ndar'y" reg imes Bearing Characteristic Number = %
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« There is a pressure

JOURNAL BEARING DESIGN ASPECTS

Bearing

Hutatlng
juurnal
In high pressures the

viscosity of the lubricant
iIncreases exponentially with B 0P
pressure H = Ho-

Qil Film

distribution around the
squeezed film

¢ : Pressure-Viscosity Coefficient
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EMPIRICAL MODEL FOR
ABRASIVE WEAR MECHANISM

+ Employ the maximum shearing stress as the
wear agent.

Moarmal

otress
Shear 5tress

t 11
L:C[TWJ Yrnax

raterial Elements
at the Surface

where
L 1s the life as number of passes,
C, n 1s the constants to be determined from the test results,
T, 18 the matenal shear yield point, and
7. 18 the maximum shear stress 1 the vicinity of the surface.
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EMPIRICAL MODEL FOR
ABRASIVE WEAR MECHANISM
(cont)

ﬂ-n
Mormal
Stress 2
7 Shear Stress
Q 2
—_— 11
T .. = ke + T,
2 T
s
W}lEI'E Material Elements

. . at the Surface
T — ME:'LKHHUIH ShEElI‘]Ilg stress

ke = Stress concentration factor

o.= P, Normal stress on the surface
7.= WP, Friction generated shear stress
u = Friction Factor
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AGGREGATE OF CONDITIONS AS WEAR AGENT

Agoregation of the conditions

Caonditions to a single wear agent Life estimatian
Temperature i
Pressure - - |
Lubricart type » Journal hearing design maodels
Furnp model !
Viscosity Minimurm film | Maximum pressure Accelerated

Life Model

i

o ear agent / Wear rate

thickness in lubricant film

l

Friction factor :

Specifications

Fressure-
YiscosityRelation

Load on The hearing

from Journal
bearing

Journal Speed

' Bearing and Journal

friction factor plots

______________________________________________
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BEARING LIFE MODELING OUTLINE

— 0, : 2
1. Introduce a wear agent to Pinax = A€ 3 Ty
integrate the effect of viscosity -
degradation and other working @
conditions
2. Correlate the accelerated wear 7 —C (3%
life of bearing with the wear T
agent - T
3. Use accelerated life tests to find Life test data analysis

model parameters tofind C, n
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BEARING ACCELERATED LIFE TEST
OUTLINE

Estimated
Life + Bearing Life Estimated
. (b extrapolation) Bearing Life
[y Accelerated test data)
e .-"'H-_F__-L""H.
" d ™, /
Ef;:'b%fb I| K \\\
Otda; f1 "15 \\ 90 %
7 50%
[ 10%
Use Condition T T, >
Tinax max1 “max Wear Agent (T _.)
Conditions: |
-WISCosihy Angregate effects
-Material Properies of conditions
-Load Fepresented by
-Temperature the wear agent
-Speed
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SEAL MODEL

Static Seal

PD
| N 2
Dynamic
Seal ™. L ~ B _
A

Cross section area
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SEAL MODEL

Failure Criterion Q, > Q;

where
Q, 15 the actual leakage rate (vol./time),
and

Q15 the allowable leakage rate.

R:PI’(QE‘}Qf)
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SEAL MODEL (cont)

B H(PSE—PDE) I, — I YN
Qa_[ 24p P ]rj—riH (m /mm)

where
P_1s the system pressure,
P_ 1s the atmospheric pressure (or downstream pressure) [psi],
y_1s the absolute fluid viscosity [lb-min/in?],
r, 18 the mnside radius of seal [in],
1, 18 the outside radius of seal [in], and
H 1s the leak parameter.
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SEAL MODEL (cont)

For Flat Seals And Gaskets

_2mr (PP P
~ 24p LP,

<. H

where
r, = radius, and
L. = contact length.
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SEAL MODEL (cont)

H=8— o

where

3 1s constant,

S 15 the contact stress, (ps1) = F/A,

F 1g the force compressing deal (lbg),

A 1s the area of seal in contact (in?),

M 18 Mever's Hardness (ps1) 1n material constant,

o 18 the wear coefficient (flow in®/partical removed)?
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SEAL MODEL (cont)

Agents of Failure are: stress S, "flow" m in3/min that affects «,
temperature that affects » e 1/T, where T, 18 the system
temperature

p?.q. 2
Q& C{: & ]-(Qﬂ)l
T,

QF =k-P?-8-T

since L = Q_, (1.e., the leak rate) therefore,
[ %' .p3.gl5. Tl
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Cconclusions

* New Directions in Reliability Engineering is
Focusing on Modeling Mechanical
Systems using Probabilistic Engineering of
Failure Concepts

+ Broad Opportunities Exists in Modeling
Mechanical Parts, Components, Systems
and Structures for Accurate Estimates of

Reliability
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