Engineering Approach to Reliability: Modeling and Probabilistic Assessment

M. Modarres
Professor
Reliability Engineering
ENRE 607 Seminar
Spring 2006

FRAMEWORK FOR MODELING FAILURE

STRESS-STRENGTH MODEL

Assumption: No permanent damage due to application of stress

Implications

Aging shifts the scale and shape parameters of stress and strength distributions

DAMAGE-ENDURANCE MODEL

Assumption: Permanent damage occurs due to applied stresses and loads Implication:

- Not used to model life of components and structures (favored by several industries)
- Engineering-based models of damage accumulation needed

PERFORMANCE-REQUIREMENT MODEL

Examples:

- · Degradation of safety margin
- System success criteria

Assumption: Aging and operational changes lead to degradation of performance and safety margin

Implication:

- Overly conservation safety margins can be relieved
- Need advances in understanding of degradation and uncertainties

ACCELERATED LIFE TEST APPROACH

ALT MODELING

FAILURE MECHANISMS AND ACCELERATION STRESSES

Wearout Failure Mechanisms	Acceleration Stresses
Fatigue crack initation	Mechanical stress/strain range, Cyclic temperature range, Frequency
Fatigue crack propagation	Mechanical stress range, Cyclic temperature range, Frequency
Creep	Mechanical stress, Temperature
Wear	Contact force, Relative sliding velocity
Diffusion	Temperature, Concentration gradient
Interdiffusion	Tem perature
Corrosion	Temperature, Relative humidity
Electromigration	Current density, Temperature, Temperature gradient
Dendritic growth	Voltage differential
Radiation damage	Intensity of radiation
Surface charge spreading	Temperature
Slow trapping	Temperature
Stress corrosion	Mechanical stress, Temperature, Relative humidity

EXAMPLE: SYSTEM LIFE MODEL

JOURNAL BEARING LUBRICATION REGIMES

- Hydrodynamic lubrication is referred to as stable lubrication
- Mixed-film lubrication is unstable
- Suppose (most often is the case) bearings works in mixed-film and boundary regimes

Bearing Characteristic Number =
$$\frac{\mu V}{P}$$

JOURNAL BEARING DESIGN ASPECTS

- There is a pressure distribution around the squeezed film
- In high pressures the viscosity of the lubricant increases exponentially with pressure

$$\mu = \mu_0.e^{\alpha.p_{\text{max}}}$$

α: Pressure-Viscosity Coefficient

EMPIRICAL MODEL FOR ABRASIVE WEAR MECHANISM

Employ the maximum shearing stress as the wear agent.

$$L = C \left(\frac{\tau_{yp}}{\tau_{max}} \right)^n$$

Material Elements at the Surface

where

L is the life as number of passes,

C, n is the constants to be determined from the test results,

 au_{yp} is the material shear yield point, and

 au_{\max} is the maximum shear stress in the vicinity of the surface.

EMPIRICAL MODEL FOR ABRASIVE WEAR MECHANISM (cont)

$$\tau_{\text{max}} = ke \, \sqrt{\left(\frac{\sigma_{\text{n}}}{2}\right)^2 + {\tau_{\text{f}}}^2}$$

Material Elements at the Surface

where

 τ_{max} = Maximum shearing stress ke = Stress concentration factor σ_{n} = P₀ Normal stress on the surface τ_{f} = μ P₀ Friction generated shear stress μ = Friction Factor

AGGREGATE OF CONDITIONS AS WEAR AGENT

BEARING LIFE MODELING OUTLINE

- Introduce a wear agent to integrate the effect of viscosity degradation and other working conditions
- Correlate the accelerated wear life of bearing with the wear agent
- Use accelerated life tests to find model parameters

$$\tau_{\max} = ke \sqrt{\left(\frac{\sigma_n}{2}\right)^2 + \tau_f^2}$$

$$L = C \left[rac{ au_{yp}}{ au_{ ext{max}}}
ight]^n$$

Life test data analysis to find C, n

BEARING ACCELERATED LIFE TEST OUTLINE

SEAL MODEL

SEAL MODEL

Failure Criterion $Q_a > Q_f$

where

and

Q_a is the actual leakage rate (vol./time),

Q_f is the allowable leakage rate.

$$R = Pr(Q_a > Q_f)$$

$$Q_{a} = \left[\frac{\pi \left(P_{s}^{2} - P_{o}^{2} \right)}{24 \nu_{a} P_{o}} \right] \frac{r_{2} - r_{1}}{r_{2} - r_{1}} H \qquad \left(in^{3} / min \right)$$

where

P_s is the system pressure,

P_o is the atmospheric pressure (or downstream pressure) [psi],

 $\nu_{\rm a}$ is the absolute fluid viscosity [lb-min/in²],

 r_1 is the inside radius of seal [in],

 r_2 is the outside radius of seal [in], and

H is the leak parameter.

For Flat Seals And Gaskets

$$Q_{a} = \frac{2\pi r_{1} \left(P_{s}^{2} - P_{o}^{2}\right)}{24\nu_{a} L P_{o}} H$$

where

 $r_1 = radius$, and

L = contact length.

$$H = \beta \frac{S}{M} \alpha^{1/3}$$

where

β is constant,
S is the contact stress, (psi) = F/A,
F is the force compressing deal (lbs),
A is the area of seal in contact (in²),
M is Meyer's Hardness (psi) in material constant,
α is the wear coefficient (flow in³/partical removed)²

Agents of Failure are: stress S, "flow" in in 3/min that affects α , temperature that affects $\nu_a \propto 1/T_s$, where T_s is the system temperature

$$Q_{a} \propto \frac{P_{s}^{2} \cdot S \cdot (Q_{a})^{1/3}}{\frac{1}{T_{s}}}$$

$$Q_a^{2/3} = k \cdot P_s^2 \cdot S \cdot T$$

since $L \propto Q_a$, (i.e., the leak rate) therefore,

$$L = \mathbf{k'} \cdot \mathbf{P_s}^3 \cdot \mathbf{S}^{1.5} \cdot \mathbf{T}^{1.5}$$

Conclusions

- New Directions in Reliability Engineering is Focusing on Modeling Mechanical Systems using Probabilistic Engineering of Failure Concepts
- Broad Opportunities Exists in Modeling Mechanical Parts, Components, Systems and Structures for Accurate Estimates of Reliability