Current Trends in Reliability Engineering Research

Lunch & Learn Talk at Chevron Company Houston, TX

July 12, 2017

Mohammad Modarres Center for Risk and Reliability Department of Mechanical Engineering

THE A. JAMES CLARK SCHOOL of ENGINEERING

Outline of this Talk

- Reliability Engineering Timeline
- Frontiers in Reliability Engineering
- Prognosis and Health Management (PHM)
- Reliability Science
- Conclusions

Timeline of Reliability Engineering

COPYRIGHT © 2017, M. Modarres

- Initiatives in 1950's
 - Weakest link
 - Advisory Group on the Reliability of Electronic Equipment (AGREE) DoD 1956-1958
 - Exponential life model
 - Reliability Block Diagrams

Exponential Distribution Retreat in 1960's

- Birth of Physics of Failure
- Uses of other distributions
- Reliability growth
- Life testing
- Failure Mode and Effect Analysis

- Logic Models: Fault Tree Analysis in 1970'S

- Probabilistic Risk Assessment
- Common Cause Failures
- Uncertainty Analysis

THE A. JAMES CLARK SCHOOL of ENGINEERING

VERSITY OF MARYLAND

Timeline (Cont.)

Accelerated Life and Degradation Testing in1980's Rebirth of Physics-of-Failure in 1990's

- Probabilistic Physics-of-Failure
- Time Varying Accelerated Tests
- Highly Accelerated Life Testing (HALT)

- Hybrid Reliability and Prognosis Models in 2000's

- Combined Logic Models, Physical Models and Probabilistic Models (e.g. BBN)
- Prognosis and Health Management (PHM) methods
- Powerful simulation tools (MCMC, Recursive Bayes and Particle Filtering)

Exploring Fundamental Sciences of Reliability in 2010's

- Thermodynamics and Entropy
- Data science and predictive Analytics (treating Big Data in reliability)
- Autonomous systems and robots
- Infrastructure and cyber-physical systems

Our Current Areas of Research in Reliability

UNIVERSITY OF MARYLAND

- Probabilistic Physics-of-Failure (PPoF)
 - More than 50-Years of History in PoF (More Recently PPoF)
 - Accelerated Reliability Testing for PPoF Model Development
 - Empirical Model for Unit-Specific Reliability Assessment
 - Simulation-Based Reliability
- Hybrid Reliability
 - Combined System Analysis Techniques: BBN, DBN, DFT, DET, Markov and Semi-Markov, FEM and FDM, FM, RBD, etc.
- Sensor-Based (Precursors) / Big Data Reliability Analysis
 - Data Fusion, Predictive Analytics, Deep Learning, Natural Language, Detection Probability, Measurement Models
- Fundamental Sciences of Reliability Engineering

UNIVERSITY OF MARYLAND

Our Current Areas of Research in Integrity / Risk Assessment

- Infrastructure Safety-Security-Resilience (SSR)
 - Integrity of Complex Systems and Networks: Cyber-Human-Software-Physical (CHSP) Systems
 - Highly Connected Infrastructure Networks: Electricity, Gas, and Water Pose Major Societal Risks of Cyberspace Attacks
 - Risk Management and Resilience
 - Societal Disruption, Health, Safety and Resilience
- Life-Cycle Risks of Advanced Energy Systems
 - Pipeline and Conventional Fossil-Based Energy System integrity
 - Renewable Energy Systems
 - Nuclear Energy (Fission and Fusion)

Integrity of Energy Systems: Corrosion

- Corrosion a major contributor to failure and damage in metals
- Annual direct cost of corrosion in U.S. oil and petrochemical industry= \$6.8 billion¹
- Mechanistic loads increase damage in the presence of Corrosion
- Pipelines are subject to mechanical stresses and corrosive environments

1. NAS, 2014

THE A. JAMES CLARK SCHOOL of ENGINEERING

Integrity of Energy Systems: Corrosion (Cont.)

- The 2010 Enbridge Spill in Michigan-U.S. was due to Corrosion-Fatigue (~\$1B cost of clean up so far!).
- Why Mechanistic Failures are Important?
 - Preexisting cracks (pits, dents, weld flaws, cracks due to SCC, etc.)
 - Mechanical loads (tensile and cyclic)

Source: PHMSA Significant Incidents Files, December 31, 2012

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND

Significant Incident Cause Breakdown

UMD Approach to a Petroleum Industry PHM Application

• Define Conditions:

- Understand needs of facility integrity management
- Define accelerated test conditions that match operations
- Perform Experiments and Data Gathering:
 - Accelerate damage on representative materials
 - Analyze data and associated uncertainties
 - Supplement with field data
- Develop Models:
 - Physics of failure Model
 - Model Validation
 - Simulate Models

THE A. JAMES CLARK SCHOOL of ENGI

Problem Definition

Test Conditions Determination

- Conduct the Experiments
- Field Data Gathering
- Modeling & Validation
- Simulate the Model
- Assess Health and Integrity

THE A. JAMES CLARK SCHOOL of ENGINEERING

Hybrid HM Approach

- Consists of the following elements:
 - Physics-of-Failure (PoF) Model
 - NDT-based integrity assessment

THE A. JAMES CLARK SCHOOL of ENGINEERING

Objectives:

 Develop data gathering approach for high-confidence remaining life estimation of pipeline systems
 Assess reliability and prognosis of pipelines

UNIVERSITY OF MARYLAND

Overview of a Current Research in PHM (Cont.)

THE A. JAMES CLARK SCHOOL of ENGINEERING

Example of a Sensor-Based Monitoring PHM

- COPYRIGHT © 2017, M. Modarres
- Describe damage using the surrogate indicator: acoustic emission (AE)
- Process raw AE features to prediction fatigue damage
- Define damage and its endurance in the context of AE features
- Applications to Prognosis and Health Management (PHM) of structures

Example of a Sensor-Based Monitoring PHM (Cont.)

Crack growth correlation with an AE feature: AE count

 [1] A. Kshtgar and M. Modarres, Acoustic Emission-Based Fatigue Crack Growth Prediction, Reliability and Maintainability Symposium (RAMS), 2013 Proceedings-Annual, p.1-5

[1]

THE A. JAMES CLARK SCHOOL of ENGINEERING

AE Features

- Amplitude
- Energy
- Rise time
- Counts (Threshold crossing)

UNIVERSITY OF MARYLAND

- Frequency content
- Waveform shape

Example of a Sensor-Based Monitoring PHM (Cont.)

$$\log\left(\frac{da}{dN}\right) = \beta_1 \log\left(\frac{dc}{dN}\right) + \beta_2$$

One can estimate da/dN, given β_1 , β_2 and AE count rate

[1] Bassim, M.N., St Lawrence, S. & Liu, C.D., 1994. Detection of the onset of fatigue crack growth in rail steels using acoustic emission. ENG FRACT MECH, 47(2), 207-214.

Example of a Sensor-Based PHM: Information Entropy

[1] Ali Kahirdeh, Christine Sauerbrunn, Mohammad Modarres, Proceedings of the 35th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt_2015, Potsdam, NY, 2015

THE A. JAMES CLARK SCHOOL of ENGINEERING

Example of a Sensor-Based PHM: Information Entropy

Material / Specimen: Al alloy 7075-T6 / Dogbone ASTM E466

Element	A1	Zn	Mg	Cu	Cr	Fe	Mn	Si	Ti	V	Zr	Other	[1]
Composition (wt %)	89.7	5.7	2.6	1.4	0.20	0.15	0.08	0.06	0.02	0.01	0.01	0.05	
Material Property	Ultimate Strength (MPa)				У	Yield Strength (MPa)				Elastic Modulus (GPa)			
Property Value	587				538				67.8				_
 Specimen Clamped styrene- butadiene rubber Wrapped neoprene strip Acoustic sensor Extensometer Optical microscope External light source Testing grip 								-	Dogk round radiu K _t =2. Eras rubbe for m for A reduc	oone d not s) .61 er ar er ba echa E sig	spea ch (1 nd ne nds ' anica jnal r	cimen mm opren were u I damp noise	with e used oer

[1] Sauerbrunn, Christine M., et al. "Damage Assessment Using Information Entropy of Individual Acoustic Emission Waveforms during Cyclic Fatigue Loading." Applied Sciences 7.6 (2017): 562

THE A. JAMES CLARK SCHOOL of ENGINEERING

UNIVERSITY OF MARYLAND

COPYRIGHT © 2017, M. Modarres

Example of a Sensor-Based PHM: Information Entropy

 Reference damage is computed by using modulus degradation

$$MDD^* = \frac{E_i - E_0}{E_f - E_0}$$

- MDD: Modulus Degradation Damage
- [1] Christine M. Sauerbrunn, Evaluation of Information Entropy from Acoustic Emission Waveforms as a Fatigue Damage Metric for Al7075-T6, 2016, University of Maryland, Master of Science Thesis

THE A. JAMES CLARK SCHOOL of ENGINEERING

Example of a Sensor-Based PHM: Information Entropy

- The correlation results were evaluated with deviation factor
- The information entropy is closer than raw AE features

UNIVERSITY OF MARYLAND

[1] Sauerbrunn, Christine M., et al. "Damage Assessment Using Information Entropy of Individual Acoustic Emission Waveforms during Cyclic Fatigue Loading." Applied Sciences 7.6 (2017): 562

An Entropic Theory of Damage: A Fundamental Science of Reliability

- Failure mechanisms leading to degradation share a common feature at a deeper level: *Dissipation of Energy*

Damage

Dissipation energies

Entropy generation

Rudolf Clausius 1822 –1888

Failure¹ occurs when the accumulated total entropy generated exceeds the entropic-endurance of the unit

- Entropic-endurance describes the capacity of the unit to withstand entropy
- Entropic-endurance of identical units is equal
- Entropic-endurance of different units is different
- Entropic-endurance to failure can be measured (experimentally) and involves stochastic variability

1. Defined as the state or condition of not meeting a requirement, desirable behavior or intended function

Thermodynamics as a Science of Reliability

multiple competing degradation processes leading to damage

Why Entropy?

Entropy can model

- Entropy is independent of the path to failure ending at similar total entropy at failure
- Entropy accounts for complex synergistic effects of interacting degradation processes
 Entropy is scale independent

Thermodynamics as a Science of Reliability (Cont.)

[1]

[1] Anahita Imanian and Mohammad Modarres, A Thermodynamic Entropy Approach to Reliability Assessment with Application to Corrosion Fatigue, Entropy 17.10 (2015): 6995-7020
 [2] M. Naderi et al., On the Thermodynamic Entropy of Fatigue Fracture, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 466.2114 (2009): 1-16
 [3] M. Naderi et al., Thermodynamic Analysis of Fatigue Failure in a Composite Laminate, Mechanics of Material 46 (2012): 113-122

THE A. JAMES CLARK SCHOOL of ENGINEERING

Conclusions

- Reliability and Risk Analysis Now Forms an Integral Part of Modern Products, Systems and Infrastructures Design and Operation
- Exciting and Abundant Activities in Reliability: Number of Conferences, Educational Programs, Scholarly Journals, Human Resource Demands
- PHM and Integrity Assessment a fast growing area coupled with computational capabilities and big data analytics

Thank you for your attention!

THE A. JAMES CLARK SCHOOL of ENGINEERING