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Motivation and Background 
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P3 Aircraft Health Management 

SAFE-life design assumes 
very low probability of crack 
initiation 
Full-sacle fatigue tests with 
2X safety factors 
Objective: Quantify the risk 
associated with fleet life 
extension (damage-tolerance 
regime) 

Fatigue 
Cracks 
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Motivation & Background 

Today’s objective in fleet management is to use an airframe 
to its maximum service life (total life) [1] 

Stochastic Physics-of-Failure (PoF) approach has proved 
useful for fleet management. 
Shortcomings of PoF: 
1. Limited knowledge about the underlying physics of failure 
2. Scarcity of relevant material-level test data to estimate model 

parameters 
3. In practice, disconnected from the system being modeled (no 

feedback) 
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[1] Hoffman, Paul C. Fleet management issues and technology needs. International Journal of Fatigue 31, no. 11-12 (November): 1631-1637. COPYRIGHT © 2010, M. Modarres



5 

Methodology 

AE
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GOAL: Developing a hybrid prognostics methodology for 
health management consisting of the following modules:  
 Physics-of-Failure (PoF) Model  
 NDI-based structural integrity assessment 
 Knowledge Fusion Module 
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Hybrid PHM Approach 
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Acoustic Emission Monitoring 
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AE for Fatigue > Background 

[2] Huang, M. et al., 1998. Using acoustic emission in fatigue and fracture materials research. JOM, 50(11), 1-14 
[3] Mix, P.E., 2005. Introduction to nondestructive testing: a training guide, Wiley-Interscience  

Fig. from [2] 

Acoustic emissions are 
elastic stress waves 
generated by a rapid 
release of energy from 
localized sources within a 
material under stress [3].  
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AE waveform from crack growth 

Passive technique (good for 
detecting damage as it 
accumulates) 
Global monitoring and 
localization capability 
Only good for detecting 
active defects 
Highly susceptible to noise 
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AE for Fatigue > AE analysis 

Signal at 
Source 
(Pulse) 

Received AE Signal 
(Complex Waveform) 
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Deconvolution of the measured 
voltage signal from the sensor to 
evaluate the properties of the 
source event is extremely difficult. 

AE Features 
Amplitude 
Energy 
Rise time 
Counts (Threshold crossing) 

Frequency content 
Waveform shape 
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AE for Fatigue > Estimating Crack Growth Rate 

Objective: To correlate AE parameters with fatigue crack 
growth parameters 

Amplitude 
Energy 
Rise time 
Counts 
Frequency 
Waveform 

Crack Growth Rate 
 
K=f(stress,crack size) 

[4] Bassim, M.N., St Lawrence, S. & Liu, C.D., 1994. Detection of the onset of fatigue crack growth in rail steels using acoustic emission. 
ENG FRACT MECH, 47(2), 207-214. 

One can estimate da/dN, 
given b1, b2 and AE count 
rate 
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Experimental Procedure 

COPYRIGHT © 2010, M. Modarres



12 

AE for Fatigue > Experimental Procedure 

AE sensor

Fatigue crack

CT Specimen (7075-T6)

Loading Grips 

• Crack Growth Clip
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AE for Fatigue > Experimental Procedure  > Crack Size Measurement 
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Experimental Procedure > Noise Filtration 
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Noise (AE from any source other that crack growth) 
Rubbing of crack surfaces 
Crack closure 
Grip noise 
Other active defects 
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Experimental Procedure > Noise Filtration (Hit Type) 
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Experimental Procedure > Noise Filtration (Peak Freq.) 
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Experimental Procedure > Noise Filtration (Amplitude) 
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Experimental Procedure> Noise Filtration 

AE Discovery Tool developed in MATLAB 
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AE for Fatigue > Model Calibration > Bayesian Regression 

Probability density of da/dN For 
a given value of measured AE 
count rate and calibrated model 
parameters. 

Likelihood 

Updating 
parameters 
via MCMC 

Integrating over parameters 
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AE-based Crack Size Prediction 

Input AE recording 
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AE-based Crack Size Prediction 

Sources of Uncertainty: 
 Stochastic nature of the model 
 Initial crack distribution 
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Knowledge Fusion 
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Knowledge Fusion > Multi-stage state updating 
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Knowledge Fusion > Bayesian Model Updating  

24 
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Knowledge Fusion > Bayesian Model Updating > Model Structure 
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Knowledge Fusion > Bayesian Model Updating > Inference 
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The objective is to infer the model parameters from the 
simulation and the AE data. 
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The correlation between AE data at subsequent time instances is captured in the 
conditional PDF terms that appear in the above equations.  
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Knowledge Fusion > Bayesian Model Updating > Inference 

Now using Bayes’ rule: 
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DSM and DAE and conditional independence 
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f does not appear in the likelihood functions and by 
using the rules of conditional probability 
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At this level, each of the likelihood terms, p( .| l), can be easily calculated 
as follows: 
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Knowledge Fusion > Bayesian Model Updating > Solution Approach 

DSM  and DAE  are independent so we can do sequential 
updating: First update using DSM  , use the resulting posterior 
as the prior for updating with DAE 
 

For DAE , discretize the distribution of E(k)’s and treat each 
resulting point as regular evidence. Perform the updating but 
weigh the resulting posterior using an appropriate weight 
calculated from the conditional distribution 
Bayesian updating at each step is performed via MCMC 
simulation 
 We use WinBUGS software to find the posterior 
 Weight calculation is performed in MATLAB 

Large computation time for large data sets and lower 
discretization error. 
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Summary 

A case study of using Bayesian fusion technique for 
integrating information from multiple sources in a structural 
health management problem was presented 
The simulation data was first used to find the model 
parameters and then, as crack size estimates from AE became 
available, the model parameters were updated in light of the 
new evidence.  
The mathematical formulation of the problem as well as the 
setup of the Bayesian inference solution was given.  
The solution includes treatment of ‘uncertain’ evidence and 
also takes into account the correlation between AE 
observations. 
The resulting equations should be solved numerically. Efforts 
are still under way to provide an efficient computational 
solution to this problem 
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Thanks you! 
Questions? Comments? 
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