ASSESSMENT OF THE INTEGRITY OF PIPELINES SUBJECT TO CORROSION-FATIGUE, PITTING CORROSION, CREEP AND STRESS CORROSSION CARCKING

> M. Modarres, M. Nuhi PI Team: A. Seibi

1st Annual PI Partner Schools Research Workshop

The Petroleum Institute, Abu Dhabi, U.A.E.

January 6-7, 2010

PI Partners

Copyright 2012 by M. Modarres

PI Sponsors

Presentation Outline

- Background
- Objectives
- Failure Mechanism Modeling and Applications
 - Corrosion-Fatigue
 - Pitting Corrosion
 - Creep
 - Stress Corrosion Cracking
- Conclusions

Objectives

- Develop Physics-based computationally <u>simple</u> probabilistic models for routine reliability assessments and health monitoring in the oil industry
 - PoF (Physics of Failure) models capture material degradation and failure mechanism and can be extrapolated to different levels.
 - Probabilistic models can adequately represent all of the factors that contribute to variability (e.g. material properties, Inspection devices accuracy, human errors, etc.)
 - Use of the probabilistic models to estimate reliability of components (our interest is pipeline reliability)

Problem Statement

Corrosion-Fatigue in Pipes

Corrosion-Fatigue Modeling Approach

Damage-Endurance Reliability Models

Probabilistic Fracture Mechanics Approach to Fatigue Reliability

Damage-Endurance Modeling Corrosion-Fatigue

Physics-Based Simulation Results

Semi-Empirical Simplified Model Development

Find the correlation of A & B with the physical parameters of the pipeline:

- Loading Stress "σ"
- Loading Frequency "v"
- Temperature "T"
- Flow Characteristic "C" (e.g., Ip, [Cl⁻], pH, ...)

Damage, $D = f(v_i, t_i | \Theta)$

 $D \approx$ e.g. crack size, a

- $v_i \approx \text{variables (e.g. T, <math>\sigma, \nu, [\text{Cl}^-], ...)$
- $t_i \approx \text{index of time (e.g. N,...)}$
- $\Theta \approx$ vector of model constants (e.g. $\varepsilon_i, A, B, ...$)

Proposed Simple PoF-Based Corrosion-Fatigue Semi-Empirical Model

Data Collection: Experimental Validation

Cortest Corrosion-Fatigue Testing Results

- Crack length vs. number of cycle from Cortest corrosion-fatigue testing:
 - in sea water of 250 ppm $Na_2S_2O_3$ -5H₂O at 383 K, and 100 and 150-MPa,
 - at different frequencies of 0.004 Hz and 0.00165 Hz.
 - Pictures from broken specimen with connected screws(for applied current and voltage) are shown at the bottom.

Broken specimen from Cortest corrosion-fatigue testing

• Broken specimen (two side views plus broken surface parts)

voltage -

current - connections

Model Parameter Estimation

Reliability and Health Monitoring Application

Reliability and Health Monitoring Application (Cont.)

Pitting Corrosion (Phase II)

 With Collaboration from PI Summer Interns Abdullah M. Al Tamimi & Mohammed Mousa Mohamed Abu Daqa

Background

Pitting Corrosion (X70Carbon Steel)

- Pitting Corrosion: An electrochemical oxidation reduction process, which occurs within localized holes on the surface of metals coated with a passive film.
- It might be accelerated by chloride, sulphate or bromide ions in the electrolyte solution.
- Pitting corrosion has a great impact on the oil and gas industry.
- There are three main stages for the pitting corrosion to occur:

Objectives of Pitting Corrosion

• Objectives

- 1. Measuring pits depth,
- 2. Measuring pits density, and
- 3. Measuring the mass loss.
- Two Corroding Environments (X70 Carbon Steel at 323 K) :

- $H_2S = Na_2S_2O_3-5H_2O$ with 100 100ppm, 150ppm, 200ppm, 300ppm and 400ppm concentration, in 5,10, 24 hours time period;

- Chloride(Sea Water) with 100 100ppm, 150ppm, 200ppm, 300ppm and 400ppm concentration, in 5, 10, 24 hours time period.

Experimental Setup/1

• The scheme of the experimental setup:

Experimental Setup/2

• The scheme of the experimental setup:

Static stress corrosion specimen with a strain gage on it to measure the applied stress.

Examples of Pitting Corrosion H₂S and Chloride-Results

- Morphology of the samples are studied by:
 - 1- Optical Microscope, Nikon Optiphot 66
 - 2- Sensitive Weighing Machine, METTLER TOLEDO AB104
 - 3- Scanning Electron Microscope, HITACHI SU-70 SEM
- Morphology of Pits on X70 Carbon Steel surface in corrosive environments

in H_2S (Mx200)

Pitting Depth of X70 Carbon Steel (H₂S and Chloride-Results)

• Pit depths for unstressed samples (left for H2S, right for Chloride) followed Weibull distributions. $D_{H.S} \sim Weib(\beta = 6.55, \alpha = 11.99 \mu m)$ $D_{[Cl^-]} \sim Weib(\beta = 1.32, \alpha = 57.68 \mu m)$

Pit Depth Distribution 400 ppm

Pitting Density of X70 Carbon Steel (H₂S and Chloride-Results)

• Pit densities followed the lognormal distributions.

 $PD_{[h_2S]} \sim LN(\mu = 3.06 , \sigma = 0.39)$

$$PD_{[Cl^{-}]} \sim LN(\mu = 2.18 , \sigma = 0.30)$$

 Pit Density distribution 400ppm, 5hours are given in [pits/cm²] The actual mean: [8 pits/cm²] (left), [9 pits/cm²] right

Estimation of Pitting Corrosion Characteristics (stressed and unstressed)

- 250 ppm H_2S (Sodium-thio-sulfate) at 80°C (353K).
- Mean Intensity: 14 in 250x250 μ m² (0.0625 mm²).
- The lognormal plotting diagrams of the unstressed and stressed

99.00

50 00

10.00

5.00

1:00

10.00

Probability Plot

Number of Pits

100.00

Pit Growth Rate Model

 Pit depths (d) increases with the concentrations according to a power law and time according to the t^{1/3}-law (justified by the literature): d = A t^m

Creep Modeling Background

- Creep is the time-dependent, thermally assisted deformation of materials under constant static load (stress).
- Mathematical description of the process is difficult and is in the form.

$$\varepsilon = f(\sigma, T, t)$$

• Creep at low temperatures (primary stage) are described by:

$$\varepsilon = \varepsilon_0 + \alpha \log(1 + \gamma t)$$

$$\varepsilon = \varepsilon_0 \beta t^{1/3}$$

- where α , β and γ are material constants;
- There is no general agreement on the form of the equations at high temperatures.

Creep Modeling Background (Cont.)

- A typical creep curve shows three distinct stages with different creep rates, determined by several competing mechanisms from:
 - strain hardening,
 - softening processes such as recovery and crystallization,
 - damage processes such as cavitation, necking and cracking.

 Creep testing and the creep curve, showing how strain ε increases with time t up to the fracture time. [http://faculty.mercer.edu/bubacz_m/Links/CH13.pdf]

Creep Approach Modeling

- Only literature search completed with some preliminary experimental preparations. The approach includes
 - 1. Using simulation of detailed models propose an empirical model.
 - 2. Perform accelerated creep tests.
 - 3. Use experimental results to assess parameters and uncertainties of the proposed empirical model accelerated life testing.

Creep Accelerated Test Set up

• The creep test is carried out by applying a constant load to a tensile specimen maintained at a constant temperature, (according to ASTM E139-70).

[http://www.sut.ac.th/engineering/Metal/pdf/MechMet]

Creep and SCC Experimental Setup

- Two chambers designed for creep and SCC tests under different environmental conditions and applied stress:
- Left: chamber for Dog-bone
- Right: chamber for CT-specimen (The prototypes specimens at work, installed on MTS-machine).

Dog-bone --specimen

CT-specimen

Stress Corrosion Cracking (SCC)

- SCC is a combination of static tensile stress below yield and corrosive environment.
- Tensile stresses may be external forces, thermal stresses, or residual stresses.
- The kinetics of SCC depends on three necessary conditions:
- 1. The chemical and metallurgical state of the material (chemical composition , thermal conditions, grain size, presence of secondary phases and precipitate, etc.)
- 2. The environmental conditions (environmental composition, temperature, pressure, pH, electrochemical potential, solution viscosity etc.)
- 3. Stress state (uniaxial, triaxial, etc.) and on crack geometry of the material.

Stress Corrosion cracking(Factor Affecting)

- General relationship for the penetration of SCC following commonly accepted dependencies (after Staehle).
- There are many submodes of SCC and, because of the large number of variables in Staehle's equation, there is a great range of possibilities in the study of SCC. This contributes to the complexity of the subject

$X = A [H^{+}]^{n} . [x]^{p} . \sigma^{m} . e^{(E - E_{0} / b)} . e^{Q / RT} . t^{q}$

- Where X is the depth of SCC penetration;
- A depends on alloy composition and structure;
- $[H^+]$ is PH; x is the environmental species;
- σ is stress;
- E is electrochemical potential;
- Q is the activation energy;
- R is gas constant; T is temperature;
- t is time;
- n, p, m, b, q are empirical constant

[Kenneth R. Trethewey; Materials & Design; Volume 29, Issue 2, 2008, Pages 501-507]

SCC Planned Tests

• Tests on statically loaded (stressed) smooth specimens

Planned Tests on statically loaded pre-cracked samples

- Fracture mechanics testing for SCC conducted with either :
 - a constant load or
 - with a fixed crack opening displacement,
- the *da/dt* is measured.
- The crack depth is determined as a function of time and the stress intensity.
- K_{1SCC} is the min. stress intensity below which SCC does not occur.

CT- specimen for fracture- mechanic-type testing where crack velocity vs. stress intensity is obtained

Schematic plot of data from fracture- fracture-type Testing. K_{ISCC} is shown to

Conclusions

- Reliability models for Corrosion-Fatigue has been developed, verified and demonstrated
- Pitting corrosion is nearly completed with models developed for pitting depth and density
- Literature search for creep models is completed, model developed and validation to follow
- SCC modeling will start in the future--Preliminary test planning is performed