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Background 

•  New military product development generally contains 
developmental reliability growth testing as design 
matures to final state 

•  Developmental testing environment may not completely 
represent operational usage environment 
–  Operators are different 
–  Loads and stresses may be different 
 

•  Reliability currently assessed in single operational test  
–  Final mature configuration 
–  Generally short and expensive tests 
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Problems with Current Operational Assessment 
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• Short test lengths can lead to “flat” Operating Characteristic (OC)
curves. This often results in test plans in which no failures or a
single failure are allowable.

• Resource constraints and technology maturity may make
demonstration infeasible
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Proposed Alternative Assessment 

•  Utilize data available from developmental testing 
within Bayesian framework 
–  Account for reliability growth during development 
–  Account for differences in test environment/conduct 
 

•  Benefits include: 
–  Narrower probability intervals 
–  Reduced testing requirements, lower costs, etc. 
–  Can use additional data sources in reliability 

assessment 
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Overarching Framework 
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Likelihood for DT Reliability Growth 

• Accounts for arbitrary corrective action strategy
• For each failure mode, i, in the system assume:

– Failure intensity is constant before and after corrective action
– n failures in demonstration test time TDT with n1 occurring before

corrective action
– Corrective action at time v with Fix Effectiveness Factor (FEF) d

• Likelihood given by

Likelihood allows for arbitrary reliability growth 
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l ti,1,ti,2 ,...,ti,ni ,ni ,ni ,1 | λi( ) = 1− di( )ni−ni ,1 λini exp −λi vi + 1− di( ) TDT − vi( )⎡⎣ ⎤⎦( )
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Choice of Prior Distribution on Failure Intensity 

•  Assumes failure mode failure intensities realized from 
common Gamma(α, β) distribution 

•  Gamma Follows “vital-few, trivial-many” construct 
•  Can use Empirical Bayes to estimate parameters 
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between failure modes 
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System Level Result 

•  System level estimate: 
–  Summing over m total failure modes  
–  Take limit as m becomes large 
–  n number of failures for each of the m observed failure modes, i.  

•  For m observed modes, system level mean is 
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where λB = mαβ ≡  prior mean
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Estimate includes contribution from unobserved modes 
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System Level Posterior Distribution 

• Posterior can be simulated to determine approximate
distribution
– Exactly Gamma if corrective actions are delayed
– Gamma approximation reasonable for arbitrary corrective action

strategies

Can use mean and 
variance to develop 

system level posterior 
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Incorporating Operational Data 

• Generally have increased failure intensity in operational
environment
– DT conditions more benign, human factors, etc.

• Define MTBF as reciprocal of mode failure intensity λ
• Assume 100γ% decrease (degradation factor) in

instantaneous MTBF (1/λ) such that

• Transformed prior found using properties of Gamma
distribution
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Scaled prior accounts for reliability degradation 
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Marginal Posterior Distribution 

• Assume n2 failures in operational test length T2

• Treats degradation factor γ  as nuisance parameter
• Marginal posterior development
‒  Compute joint posterior
‒  Compute marginal distribution by integrating over nuisance

parameter 

 

• Use Beta prior distribution for γ

Marginal posterior probabilistically accounts for degradation 
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l tOT,1,tOT,2 ,…,tOT,nOT ,nOT | λOT( ) = λOT
nOT exp −λOTTOT( )
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OT Posterior Assessment 

•  Posterior mean is scaled mean for Gamma distribution 
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System Level OT Posterior Distribution 

•  Exact system-level posterior can be simulated using Markov 
Chain Monte Carlo methods 

•  Posterior well approximated with Gamma distribution 
•  Use approximate Gamma to develop probability intervals 
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Performance Comparisons 
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Bayesian approach performs better than current methods 
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Conclusions/Future Work 

• Use of reliability data from developmental testing
provides additional information that increases
performance of overall reliability estimate

• Bayesian probabilistic approach provides flexibility
– Can utilize multiple information sources
– Can include additional sources of uncertainty

• Current/future efforts include:
– Modeling uncertainty on FEF values
– Developing prior information from additional data sources
– Analogous results for discrete systems
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