Assessing Reliability Using Developmental and Operational Test Data

Martin Wayne, PhD, U.S. AMSAA Mohammad Modarres, PhD, University of Maryland, College Park

> Presented at the RAMS-2014 Symposium Colorado Springs, Colorado Tuesday, January 28, 2014, 11:15 AM

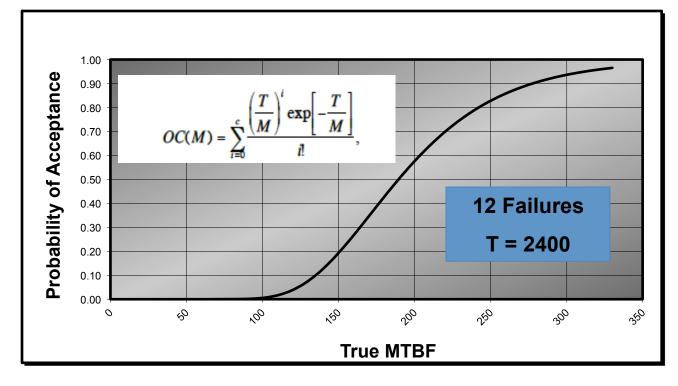
Agenda

- Background
- Overarching Model Framework
- Reliability growth in Developmental Testing (DT)
- Combing DT and Operational Testing (OT) Results
- Performance Comparisons
- Conclusions and Future Work

Background

- New military product development generally contains developmental reliability growth testing as design matures to final state
- Developmental testing environment may not completely represent operational usage environment
 - Operators are different
 - Loads and stresses may be different
- Reliability currently assessed in single operational test
 - Final mature configuration
 - Generally short and expensive tests

Problems with Current Operational Assessment



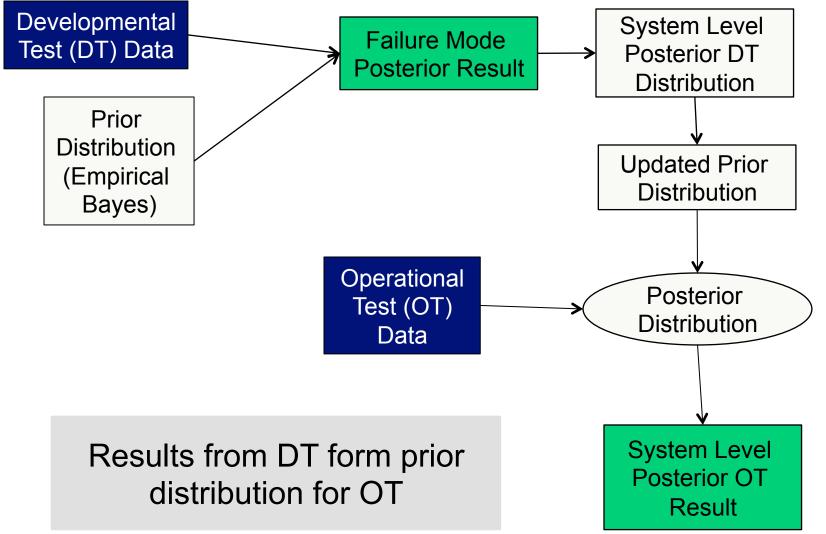
M = true but unknown reliability of the system and c = maximum number of allowable failures T = total demonstration test length

- Short test lengths can lead to "flat" Operating Characteristic (OC) curves. This often results in test plans in which no failures or a single failure are allowable.
- Resource constraints and technology maturity may make demonstration infeasible

Proposed Alternative Assessment

- Utilize data available from developmental testing within Bayesian framework
 - Account for reliability growth during development
 - Account for differences in test environment/conduct
- Benefits include:
 - Narrower probability intervals
 - Reduced testing requirements, lower costs, etc.
 - Can use additional data sources in reliability assessment

Overarching Framework



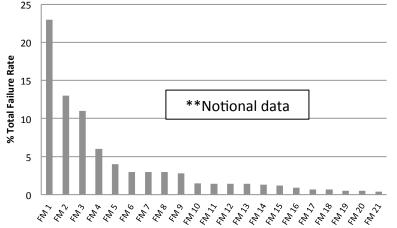
Likelihood for DT Reliability Growth

- Accounts for arbitrary corrective action strategy
- For each failure mode, i, in the system assume:
 - Failure intensity is constant before and after corrective action
 - *n* failures in demonstration test time T_{DT} with n_1 occurring before corrective action
 - Corrective action at time v with Fix Effectiveness Factor (FEF) d
- Likelihood given by

$$l(t_{i,1},t_{i,2},...,t_{i,n_i},n_i,n_i,n_i,\lambda_i) = (1-d_i)^{n_i-n_{i,1}} \lambda_i^{n_i} \exp(-\lambda_i [v_i + (1-d_i)(T_{DT} - v_i)])$$

Likelihood allows for arbitrary reliability growth

Choice of Prior Distribution on Failure Intensity



$$p(\lambda) = \frac{\lambda^{\alpha - 1}}{\Gamma(\alpha)\beta^{\alpha}} \exp\left(-\frac{1}{\beta}\lambda\right)$$

Provides inherent connection between failure modes

- Assumes failure mode failure intensities realized from common Gamma(α, β) distribution
- Gamma Follows "vital-few, trivial-many" construct
- Can use Empirical Bayes to estimate parameters

$$p(\lambda_{i} \mid n_{i}) = \frac{\lambda_{i}^{\alpha + n_{i} - 1}}{\Gamma(\alpha + n_{i}) \left[\frac{1}{\beta} + v_{i} + (1 - d_{i})(T_{DT} - v_{i})\right]^{-(\alpha + n_{i})}} \exp\left[-\lambda_{i} \left(\frac{1}{\beta} + v_{i} + (1 - d_{i})(T_{DT} - v_{i})\right)\right]$$

System Level Result

- System level estimate:
 - Summing over *m* total failure modes
 - Take limit as *m* becomes large
 - n number of failures for each of the m observed failure modes, i.
- For *m* observed modes, system level mean is

$$E[\lambda_{s}] = \sum_{i=1}^{m} \left(\frac{(1-d_{i})n_{i}}{\frac{1}{\beta} + v_{i} + (1-d_{i})(T-v_{i})} \right) + \left(\frac{\lambda_{B}}{1+\beta T} \right)$$

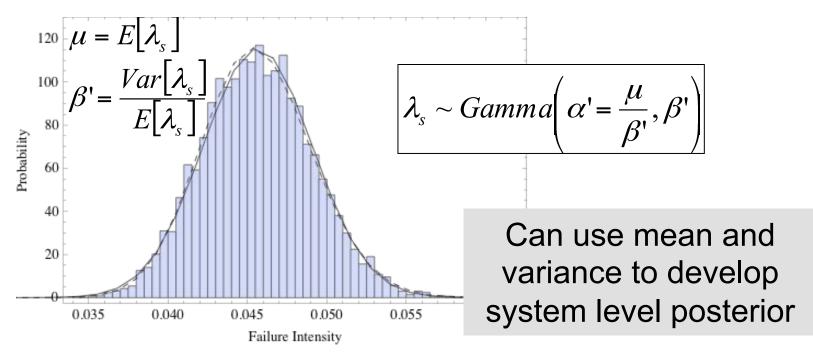
Observed Unobserved

where
$$\lambda_{\rm B} = m\alpha\beta \equiv \text{ prior mean}$$

Estimate includes contribution from unobserved modes

System Level Posterior Distribution

- Posterior can be simulated to determine approximate distribution
 - Exactly Gamma if corrective actions are delayed
 - Gamma approximation reasonable for arbitrary corrective action strategies



Incorporating Operational Data

- Generally have increased failure intensity in operational environment
 - DT conditions more benign, human factors, etc.
- Define MTBF as reciprocal of mode failure intensity $\boldsymbol{\lambda}$
- Assume 100 γ % decrease (degradation factor) in instantaneous MTBF (1/ λ) such that

$$\lambda_{DT} = (1 - \gamma) \lambda_{OT}$$

 Transformed prior found using properties of Gamma distribution

$$\lambda_{OT} \mid \gamma = \frac{\lambda_{DT}}{(1 - \gamma)} \sim Gamma \left[\alpha', \frac{\beta'}{(1 - \gamma)} \right]$$

Scaled prior accounts for reliability degradation

Marginal Posterior Distribution

- Assume n_2 failures in operational test length T_2
- Treats degradation factor γ as nuisance parameter
- Marginal posterior development
 - Compute joint posterior
 - Compute marginal distribution by integrating over nuisance parameter

$$l(t_{OT,1}, t_{OT,2}, \dots, t_{OT,n_{OT}}, n_{OT} \mid \lambda_{OT}) = \lambda_{OT}^{n_{OT}} \exp(-\lambda_{OT} T_{OT})$$

$$p(\lambda_{OT} \mid n_{OT}) = \int_{\Gamma} \frac{p(\gamma) p(\lambda_{OT} \mid \gamma) l(t_{OT,1}, t_{OT,2}, \dots, t_{OT,n_{OT}}, n_{OT} \mid \lambda_{OT})}{\iint_{\Lambda,\Gamma} p(\gamma) p(\lambda_{OT} \mid \gamma) l(t_{OT,1}, t_{OT,2}, \dots, t_{OT,n_{OT}}, n_{OT} \mid \lambda_{OT}) \partial \lambda_{OT} \partial \gamma} \partial \gamma$$

• Use Beta prior distribution for γ

Marginal posterior probabilistically accounts for degradation

OT Posterior Assessment

Posterior mean is scaled mean for Gamma distribution

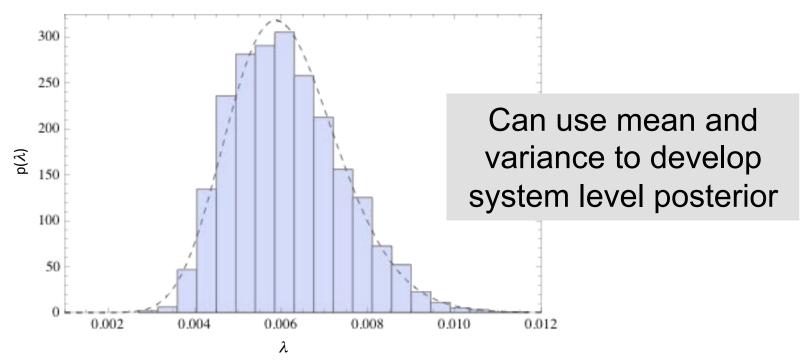
$$E[\lambda_{s} | n] = \begin{pmatrix} \frac{\mu}{\beta'} + n_{2} \\ \frac{1}{\beta'} + T_{2} \end{pmatrix}^{2} F_{1} \begin{bmatrix} \frac{\mu}{\beta'} + n_{2} + 1, a, a + b + \frac{\mu}{\beta'}, \frac{\frac{1}{\beta'}}{\frac{1}{\beta'} + T_{2}} \end{bmatrix}$$

Standard posterior mean for Gamma where μ, β' defined as on slide 9

Ratio of Hypergeometric functions accounts for DT/OT degradation

System Level OT Posterior Distribution

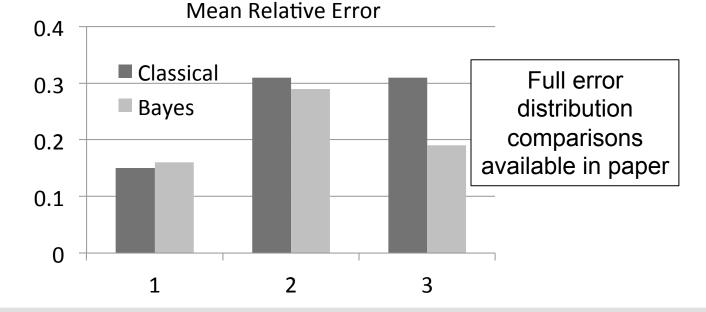
- Exact system-level posterior can be simulated using Markov Chain Monte Carlo methods
- Posterior well approximated with Gamma distribution
- Use approximate Gamma to develop probability intervals



Performance Comparisons

Case	Initial DT MTBF	DT Length	OT Length
1	100	1000	2000
2	400	2000	2000
3	100	2000	500

Simulation developed to examine relative error between model estimate and "true" value



Bayesian approach performs better than current methods

Conclusions/Future Work

- Use of reliability data from developmental testing provides additional information that increases performance of overall reliability estimate
- Bayesian probabilistic approach provides flexibility
 - Can utilize multiple information sources
 - Can include additional sources of uncertainty
- Current/future efforts include:
 - Modeling uncertainty on FEF values
 - Developing prior information from additional data sources
 - Analogous results for discrete systems