

An Acoustic Emission Approach to Assess Remaining Useful Life of Aging Structures Under Fatigue Loading

Mohammad Modarres University of Maryland Department of Mechanical Engineering Center for Risk and Reliability

6.2 Non-Peer Review Presentation

September 8th, 2016

INTRODUCTION

Motivation

- Full-scale fatigue testing and safelife methodology is employed to estimate aircraft fatigue life
 - Time demanding, expensive, and often leads to premature aircraft retirement^[1]
- Nondestructive evaluation methods supplement service life models^[2]
- Previous work has correlated acoustic emission (AE) signals to large crack growth^[3-12]

Objective

- Estimate remaining useful life (RUL) based on behavior of identified damage precursors in AE signals
 - Identify potential damage precursors in AE signals and correlate to fatigue damage both prior to and after a visible crack has initiated
 - Observe behaviors of damage precursors during excitation loading or small vibrations

SCOPE OF RESEARCH

- Stage 1 (current) Identify damage precursors attributed to microcracks prior to visible damage
- Stage 2 (future) Observe behaviors of damage precursors during short-term, high-frequency, excitation loading

COMPLETED WORK – STAGE 1

- Performed fatigue experiments with AL7075-T6
- Recorded AE signals, measured strain, and monitored crack initiation and growth during experiments
- Developed three methods to estimate information entropy from AE signals as a potentially more sensitive AE metric
- Used modulus degradation as the "true" measure of fatigue damage rather than crack length

ACOUSTIC EMISSIONS

- Acoustic emissions = stress waves that propagate when an applied load causes permanent deformation and stored elastic strain energy is released^[13]
- Detected with piezoelectric sensors

Specimen

Stress waves

Crack

MICROSTRUCTURAL DISORDER

- AE signals are emitted due to dislocation movement and microcracks^[10-11, 14-23]
- AE features correlated to damage, but one can use a more proper and sensitive measure of disorder in AE signals: Information entropy

Fatigue Damage Evolution

Growing Microstructural Disorder

INFORMATION ENTROPY

- Information entropy: measure of disorder or uncertainty in a message^[24, 25]
- Given a probability distribution, it is possible to express information entropy of this distribution as^[26]
- $H = -\sum_{i=1}^{n} n p(x \downarrow i) \log_{2} p(x \downarrow i)$
 - $p(x_i)$ is the probability a certain value, x_i , present within the message with n possible values, units are in bits
 - Need $\sum_{i=1}^{n} p(x \downarrow i) = 1$

Information Entropy: Acoustic Emission As a Damage Signal

INFORMATION ENTROPY APPLIED TO AE

- One could express information entropy from AE amplitude^[27, 28], frequency^[27], and count^[29, 30] distributions from several AE signals
- Instead of using summary AE features like amplitude and counts, information entropy from each individual AE signal can be calculated
- We proposed three formulations:
 - 1. instantaneous entropy
 - 2. average entropy
 - 3. weighted average entropy

Other Entropic Damage Characterizations

EXPERIMENTAL PROCEDURE

Number of tests	26, reduced analysis to 8		
Material	AI 7075-T6		
Loading ratio	0.1		
Loading freq.	5 Hz		
Applied load	8-15 kN		
Strain	Epsilon 3542		
Strain	extensometer with 25		
measurement	mm gauge length		
Crack	Optical microscope,		
monitoring	images taken every 5		
system	seconds		
	Two resonant Micro30s		
	sensors from MISTRAS		
AE sensors	Group, 150-400 kHz		
	range, resonant freq. of		
	225 kHz		
	Mechanical damping		
noise reduction	apparatus, post-process		
	filtering		

AE Parameter	Value	
Peak definition time (PDT)	300 µs	
Hit definition time (HDT)	600 µs	
Hit lockout time (HLT)	1000 µs	
Sampling rate	1 MSPS	
Pre-trigger length	256 µs	
Hit length	2048 µs	
Band pass filter	1 kHz-3 MHz	

MECHANICAL DAMPING

Reduced noise to below 45 dB

- Specimen
 Clamped styrenebutadiene rubber
- 3. Wrapped neoprene strip
- 4. Acoustic sensor
- 5. Extensometer
- 6. Optical microscope
- 7. External light source8. Testing grip
 - 12

POST-PROCESSING FILTERING

- Expected AE signal behavior
 - Sporadic signal at various loads throughout fatigue life
 - After crack initiation, many signals at high loads and then at all loads
- Assume clusters of signals at low/mid loads are noise

ELASTIC MODULUS DEGRADATION

- Wish to estimate damage prior to an observable crack
- Assume that structural degradation is reflected as a decrease in elastic modulus
- Normalize modulus to compare trends between tests to yield *modulus degradation damage (MDD)*
- $MDD = E \downarrow instant E_{\gamma}$
 - 0 is a pristine specimen
 - 1 is a fractured specimen

CYCLIC TRENDS OF CUMULATIVE AE PARAMETERS

• Can compare the cyclic trends of cumulative *instantaneous entropy*, cumulative counts, and cumulative absolute energy

Trends prove to be similar to fatigue stages

VARIATION IN FINAL VALUES AT FRACTURE

- Final values at specimen fracture are comparable but vary
 - Measure variance with coefficient of variation, $%CV = \sigma/\mu * 100\%$

Cumulative AE Parameter	Mean (µ)	Standard Deviation (σ)	Coefficient of Variation (CV)
Instantaneous entropy	4221.6 bits	945.2 bits	22.4%
Counts	12,360	2,245	18.2%
Energy	9.21x10 ⁸ aJ	1.87x10 ⁸ aJ	20.2%

- Instantaneous entropy has highest variation
 - More sensitive to slight differences in AE signals
 - Could potentially be a better, more sensitive measure of damage if variations between experiments were reduced

DAMAGE TRENDS OF CUMULATIVE AE PARAMETERS

- Want to assess how AE parameters correlate to fatigue damage
 - Normalize AE parameters: $p \downarrow norm = p \downarrow i p \downarrow min / p \downarrow max p \downarrow min$ where *p* is any AE parameter
- Assumption: normalized cumulative AE parameters with a one-to-one relationship with measured damage suggest "perfect correlation"

DAMAGE TRENDS OF CUMULATIVE AE PARAMETERS

- Deviation factor = summation of deviations at each AE signal between cumulative trends and one-to-one model
- AE parameter with lowest deviation factor is assumed to be a better representation of damage

- Feature entropy may be a better statistic of measure damage compared to counts and energy
 - Lowest deviation factor for all but one experiment

CYCLIC TREND OF AVERAGE ENTROPY

Initiation => 0.25 mm => 1mm => Fracture •

- Varies for the first few signals, voltage distribution not yet inertial
- Sporadic AE signals are received for the majority of life
- As crack initiates, entropy decreases meaning signals have consistent and low disorder
 - High disorder signals just before fracture
- May be used to differentiate between small and large cracks 19

TREND OF WEIGHTED AVERAGE ENTROPY

Initiation => 0.25 mm => 1mm => Fracture

- Same trend as instantaneous entropy, but more erratic
- May also be used to differentiate between small and large cracks

ACCOMPLISHMENTS

- Three proposed methods to estimate the disorder from AE signals proved to be unique and informative
 - Found that instantaneous entropy may better correlate with the fatigue damage than the AE counts and energy
 - Found that average and weighted average entropy methods may be able to differentiate between small and large cracks
- AE noise was reduced by means of a mechanical damping apparatus and post-process noise reduction techniques
- Use of modulus degradation as a measure of damage prior to a crack was investigated
- Recommended instantaneous entropy as well as all other AE parameters in future stage of excitation testing

ISSUES

- AE noise amplitude was too high => reduced by applying mechanical damping
- Still received noise signals after damping => filtered noise using post processing methods
- Uncertain and inconsistent MDD at supposedly consistent crack lengths
 - Due to monitoring and measuring crack on one side of specimen and uneven crack propagation
 - Will consider making specimen thicker to reduce uneven propagation, monitoring crack from different view, measuring strain with a more sensitive method

FUTURE WORK

- Quantitatively define relationship between information entropy and modulus degradation damage
- Investigate thermodynamic entropy as additional potential damage precursors
- Finalize Stage 2 of the research where potential damage precursors will be monitored during excitation loading in variously degraded structures
 - Design test setup that will simultaneously collect all damage precursor data
 - Select best form of the high frequency excitation conditions to elicit damage precursors while not causing further fatigue damage
 - Assess feasibility and value of STLP as an applied NDE technique

RECENT PUBLICATIONS AND PRESENTATIONS

- Journal papers
 - Kahirdeh A, Sauerbrunn C, Yun H, Modarres M (2016) A parametric approach to estimation of the acoustic entropy during the fatigue phenomenon. International Journal of Fatigue, under review
 - Sauerbrunn C, Kahirdeh A, Yun H, Modarres M (2016) Damage assessment using information entropy of individual acoustic emission waveforms during cyclic fatigue loading. International Journal of Fracture, submitted manuscript
- Thesis
 - Sauerbrunn C (2016) Evaluating information entropy from acoustic emission waveforms as a fatigue damage metric for AI7075-T6. M.S. thesis, Department of Mechanical Engineering, University of Maryland, College Park, MD

RECENT PUBLICATIONS AND PRESENTATIONS

- Conference papers and presentations
 - Kahirdeh A, Sauerbrunn C, Modarres M (2015) Acoustic emission entropy as a measure of damage in materials. 35th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Potsdam, NY
 - Sauerbrunn C, Modarres M (2015) Effects of material variation on acoustic emissions-based, large-crack growth model. 5th American Society for Nondestructive Testing Spring Research Symposium, New Orleans, LA
 - Sauerbrunn C, Modarres M (2016) Estimating fatigue damage with acoustic emission entropy prior to a visible crack. Nondestructive Evaluation of Aerospace Materials and Structure, St. Louis, MO
 - Kahirdeh A, Sauerbrunn C, Yun H, Modarres M (2016) Can energy dissipation and entropy production characterize damage evolution in loaded solid materials? 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Ghent, Belgium

REFERENCES

[1] N. lyyer *et al.*, "Aircraft life management using crack initiation and crack growth models–P-3C Aircraft experience," *International Journal of Fatigue*, vol. 29, pp. 1584-1607, April 2007.

[2] A. Riley *et al.*, *Aviation Maintenance Technician Handbook: General*, Department of Transportation, Federal Aviation Administration, Airmen Testing Standards Branch. Oklahoma City, OK, pp. 8-1–8-34, 2008.

[3] T. M. Morton, R. M. Harrington, and J. G. Bjelectich, "Acoustic emissions of fatigue crack growth," *Engineering Fracture Mechanics*, vol. 5, pp. 691-697, 1973.

[4] M. N. Bassim, S. S. Lawrence, and C. D. Liu, "Detection of the onset of fatigue crack growth in rail steels using acoustic emission," *Engineering Fracture Mechanics*, vol. 47, no. 2, pp. 207-214, 1994.

[5] A. Berkovits and D. Fang, "Study of fatigue crack characteristics by acoustic emission," *Engineering Fracture Mechanics*, vol. 51, no. 3, pp. 401-416, 1995.

[6] T. M. Roberts and M. Talebzadeh, "Fatigue life prediction based on crack propagation and acoustic emission count rates," *Journal of Constructional Steel Research*, vol. 59, pp. 679-694, 2003.

[7] T. M. Roberts and M. Talebzadeh, "Acoustic emission monitoring of fatigue crack propagation," *Journal of Constructional Steel Research*, vol. 59, pp. 695-712, 2003.

[8] H. Chang *et al.*, "Acoustic emission study of corrosion fatigue crack propagation mechanism for LY12CZ and 7075-T6 aluminum alloys," *Journal of Materials Science*, vol. 40, pp. 5669-5674, 2005.

[9] M. Rabiei, "A Bayesian framework for structural health management using Acoustic Emission monitoring and periodic inspections," PhD dissertation, Department of Mechanical Engineering, University of Maryland, College Park, MD, 2011.

[10] Z. Han *et al.*, "Effects of micro-structure on fatigue crack propagation and acoustic emission behaviors in a micro-alloyed steel," *Materials Science & Engineering A*, vol. 559, pp. 534-542, 2013.

REFERENCES

[11] A. Keshtgar, "Acoustic emission-based structural health management and prognostics subject to small fatigue cracks," PhD dissertation, Department of Mechanical Engineering, University of Maryland, College Park, MD, 2013.

[12] C. Sauerbrunn and M. Modarres, "Effects of material variation on acoustic emissions-based, large-crack growth model," in *Proceedings of the 2016 25th ASNT Research Symposium*, New Orleans, LA, pp. 105-109. 2016.

[13] C. J. Hellier, "Acoustic emission testing," in *Handbook of Nondestructive Evaluation*. New York: McGraw-Hill, pp. 10.1-10.39, 2001.

[14] P. A. Vanniamparambil, U. Guclu, and A. Kontsos, "Identification of crack initiation in aluminum alloys using acoustic emission," *Experimental Mechanics*. pp. 1-14, 2015.

[15] V. Chaswal *et al.*, "Fatigue crack growth mechanism in aged 9Cro-1Mo steel: threshold and Paris regimes," *Materials Science and Engineering A*, vol. 395, pp. 251-264, 2005.

[16] Z. Rahman *et al.*, "Incipient damage detection and its propagation monitoring of rolling contact fatigue by acoustic emission," *Tribology International*, vol. 42, pp. 807-815, 2009.

[17] S. L. McBride, J. W. MacLachlan, and B. P. Paradis, "Acoustic emission and inclusions fracture in 7075 aluminum alloys," *Journal of Nondestructive Evaluation*, vol. 2, no. 1, pp. 35-41, 1981.

[18] M. Elforjani and D. Mba, "Detecting natural crack initiation and crack in slow speed shafts with the acoustic emission technology," *Engineering Failure Analysis*, vol. 16, pp. 2121-2129, 2009.

[19] M. Lugo *et al.*, "Quantification of damage evolution in a 7075 aluminum alloy using an acoustic emission technique," *Materials Science & Engineering A*, vol. 528, pp. 6708-6714. 2011.

[20] Z. Han *et al.*, "Acoustic emission study of fatigue crack propagation in extruded AZ31 magnesium alloy," *Materials Science & Engineering A*, vol. 597, pp. 270-278, 2014.

REFERENCES

[21] J. Čapek *et al.*, "Study of the loading mode dependence of the twinning in random textured cast magnesium by acoustic emission and neutron diffraction methods," *Materials Science & Engineering A*, vol. 602, pp. 25-32, 2014.

[22] P. Mazal, F. Vlasic, and V. Koula, "Use of acoustic emission method for identification of fatigue micro-cracks creation," *Procedia Engineering*, vol. 133, pp. 379-388, 2015.

[23] D. Gager, P. Foote, and P. E. Irving, "Effects of loading and sample geometry on acoustic emission generation during fatigue crack growth: implications for structural health monitoring," *International Journal of Fatigue*, vol. 81, pp. 117-127, 2015.

[24] D. J. C. MacKay, Information theory, inference, and learning algorithms, Cambridge: Cambridge University Press, 2003.

[25] J. P. Sethna, *Entropy, Order Parameters, and Complexity*, Oxford: Clarendon Press, 2011.

[26] C. E. Shannon, "A mathematical theory of communication," *The Bell System Technical Journal*, vol. 27, pp. 379-423, 623-656, 1948.

[27] R. Unnthorsson, T. Runarsson, and M. Jonsson, "AE entropy for the condition monitoring of CFRP subjected to cyclic failure," *Journal of Acoustic Emission*, vol. 26, pp. 262-269. 2008.

[28] G. Qi, M. Fan, and G. Lewis, "An innovative multi-component variate that reveals hierarchy and evolution of structural damage in a solid: application to acrylic bone cement," *Journal of Material Science: Materials in Medicine*, vol. 23, pp. 217-228, 2012.

[29] M. Amiri and M. Modarres, "AE entropy for detection of fatigue crack initiation and growth," in *2015 IEEE Conference on Prognostics and Health Management*, Austin, TX, pp. 1-8. 2015.

[30] A. Kahirdeh, C. Sauerbrunn, and M. Modarres, "Acoustic emission entropy as a measure of damage in materials," in *35th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering*, 2015.

FURTHUR INFOMATION

INSTANTANEOUS ENTROPY

30

AVERAGE ENTROPY

WEIGHTED AVERAGE ENTROPY

32

SUMMARY OF ENTROPY FORMULATIONS

Entropy Formulation	Assumption about "true" AE voltage distribution	How best to estimate "true" AE voltage distribution	Behavior with increasing fatigue damage
Instantaneous entropy	Ever-changing and independent between time steps	Independent distributions from each received AE signal	Erratic since all values are independent
Average entropy	Slowly changing where changes are assumed to occur with received AE signals	Combine all received AE signal distributions such that all signals have equal weight on estimate	Inertial since values are dependent on all received voltage readings
Weighted average entropy	Slowly changing where changes are assumed to occur throughout fatigue life	Combine received AE signal distributions such that recent signals have more weight on the estimate than previous signals	Inertial yet slightly erratic since values are dependent on all voltage readings but influenced more by current signals

POST-PROCESSING FILTERING

- Despite mechanical damping, still collected AE signals believed to be background noise
- Filter based on the applied load at the point of the received signals^[3, 9, 11, 20]

