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Background Motivation

Probabilistic Physics-of-Failure (PPoF) New methodology of system
approach is a powerful method of reliability modeling is required to
component reliability analysis because make a paradigm shift away from
it relies on understanding the the analysis methods solely driven
underlying physical processes by field and test data and towards
Taking PPoF approach to the modeling physics-of-failure (PoF) methods.
of a complex dynamic system is Physics-of-Failure (PoF) based
challenging, due to the complexity of modeling technique, needs to be
system logic and system dynamics, expanded for applications to
specifically dependencies of failure reliability modeling of complex
modes and mechanisms under variable engineering systems.

operational conditions. The new methodology should be
Traditional techniques of system capable of modeling :

reliability! including dynamic Interaction and interdependency of

techniques? often do not provide a failure rnechamsrns of complex sy§tems
Dynamics of environmental conditions

structured framework for ) :
. . and operational inputs from other
incorporation of PPoF models of components

system components and for capturing Degraded states of the system
dynamic behavior of complex system.

Sip
N J’O LFault Trees, Event Trees, Reliability Block Diagrams

L 2 Markov Chains, Stochastic Petri Nets, Dynamic Event Trees,
18 / 56 other dynamic techniques
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Research Approach

“Agent Autonomy” concept used as a solution method for PPoF
system modeling.

* Originated from Artificial Intelligence (Al) as a leading intelligent
computational inference in modeling of Multi Agents Systems (MAS).

* In agent-oriented approach each agent has the following capabilities:

Sense the environment and collect critical information;

Define state evolution autonomously and without interference of
environment or other agents;

Share properties and the current state with other agents.

* The concept of agent autonomy in the context of system reliability
modeling was first proposed by Azarkhail [1].

* The current research extends Azarkhail’s approach to make agents
autonomous with better learning capabilities.
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[1] Azarkhail, M., “Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures

and Mechanical Systems”, PhD thesis, University of Maryland, College Park, 2007.
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Research Approach (cont.)

* Introduce a new agent classification to better account for
degradation and failure processes.

* ldentify agent properties within the scope of system evolution in
time.

* Introduce agent learning and agent autonomy as the main
properties of intelligent agents.

The autonomous agents are able to activate, deactivate or completely redefine
themselves during the analysis.

Agent autonomy makes this approach fundamentally different from all existing
methods of PoF-based reliability modeling.

* Present an example of agent-oriented PPoF modeling of complex
engineering system to demonstrate the methodology.
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Concept Description

e Each system may be decomposed to failure mechanisms of its components
(parts) . Failure mechanisms are described by PoF relationships.

* Consider complex multilevel interdependency of failure mechanisms of the
dynamic system gives a specific example.

* The agent-oriented PoF approach provides a structured formalism of
modeling this type of interdependency via two-way interactions.

T =min(T, )
l’]

pim;
Part 1 Part 2 Part 3
Mechanism 1 Mechanism 2 Mechanism 3

Probabilistic Life: Probabilistic
Life Model (Mechanistic or
Physics of Failure)

Stress or Strength vs. Life:
Mechanistic or Physics of Failure
Life Model, for Failure Time or
Time to Degradation

Stress-Strength Variables:
Relationships for Stress variables
Causing Degradation or Failure
when Strength is exceeded

Enablers: Relationships
Connecting Coupling Factors to
Stress-Strength Variables

Coupling Factors: Inter Factors -
\q vRSI TJ, Operational Variables (Internal to

the Part)
be A O«\

18 / 56 Coupling Factors: Intra Factors -

Environmental / Operational
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Variables (External to the Part)
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Concept Description (Cont.)
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Probabilistic-Mechanistic Life Model of Ball Bearing for the Rolling Contact
Fatigue - Wear Mechanism (Fatigue Cracking and Formation of Flake-like Wear Particles)

7(N;n,x,0| Data) « L(Data | N;n,k,0) ® 1(n,k,0)

A

N(Cycles to Failure) « (%) ; LnN =Kk —nLnS

n

N

S < g(AP,T)
—
Finite Element Model

r

Systems
Equations

T= h(V,TE),OP)‘

P(Load - Hertzian\Qontact Stress) o« g(Design Specs,V ,Grms,L, M)

A \

\

\
Design Specs (Material, Surfage roughness, Surface defects, Geometrical Tolerances, other),
Operating Speed (V), Lubricant oxidation & degradation properties (L)
4 <4 ¥

A A
/

/

/V

~
~
~
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é d .
Duty Cycle / Operating Profile (OP), External Ambient Temperature (T,), Maintenance (M),

Operating Vibration (Grms)
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Probabilistic Life:

Mechanistic or Physics
of Failure Life Model

Stresses & Strength vs.
Life: Mechanistic or
Physics of Failure Model,
for Failure Time or Time to
Degradation

Stresses:

Relationships for Stress
Agents Causing Overload
or Damage when Strength
is exceeded

Enablers:

Relationships Connecting
Coupling Factors To
Stresses

Coupling Factors:
Describing Inter
Environments

Coupling Factors:
Describing Intra
Environments




Definition of Agents

* Agent considered as a computer replica of:
* Parameter, characteristic or feature of a hardware component or system;
* Environmental or operational parameters;
* Parameter, characteristic or feature of software program;
e Characteristic or feature of human element.

* This computer replica:

* contains all properties of the respective parameter, characteristic or
feature,

* mimics how it changes over time, and

* is able to communicate with other agents by sharing necessary information.
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Agent Classification

 The agent structure combines the agents of several types to:

e Optimize use of available data and information, and

* Allow bidirectional communication between agents when required to model
complex interdependencies.

* Three types of agents are proposed:
* Type | Micro-Agents,
* Type Il Macro-Agents,
* Type lll Monitoring Agents.

* Each variable of Probabilistic-Mechanistic Life Models is assigned
with an agent of a certain type, for example:

* Type | Micro Agents are assigned to Coupling Factors (Inter and Intra), such as T,
V, Grms, L, M.

* Type Il Macro Agents are assigned to Enablers, Stress and Strength variables P, T,
S, N.

* Type lll Monitoring Agent is assigned to the system state variable T as time to

WERSIT the arrival of the earliest failure.
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Agent Classification (Cont.)

* Type | Micro-Agents is the highest granularity of agent autonomy
representing single independent variables.

Group A. Component Design Parameters (Inter Coupling Factors)
1. Material properties

2. Shape/Geometry/Dimensions

3. Design & Manufacturing Tolerances

Group B. Usage Stress Variables and Mission Parameters (Intra Coupling Factors) /
Component Performance Characteristics (Inter Coupling Factors)

Group B1. Operational Conditions | Group B2. Environmental Factors

1. Voltage 1. Temperature

2. Power 2. Thermal cycling range
. Humidity
. Moisture

3. Pressure 3

4. Vibration 4

5. Mechanical Load Characteristic 5. Concentration of reactive substances (salt, acid)

(of any type, e.g. Stress Amplitude) 6. Icing
7
8
9

6. Acceleration . Dust, dirt, grease, oil, other contaminants
7. Electromagnetic Impact . Radiation

8. Speed . Lightning

9. Altitude 10. Atmospheric pressure

Group B3. Human Factors

Various factors due to human interaction during system operation and maintenance

Group B4. Component Performance Parameters

\QERSI T Various parameters / characteristics of a piece part, a component or the system which, due to
O% S\ e} N lack of engineering knowledge, cannot be expressed as a combination of other types of
agents (from Groups A, B1 to B3) to form a Type Il Macro-Agent (defined below)
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Agent Classification (Cont.)

e Higher abstraction level are called Type Il Macro-Agents are defined as a
combination of two or more Micro-Agents via PoF based relationship.

*  More complex Macro-Agent may combine several Micro- and Macro-Agents in
the similar manner.

* Example: Type Il Macro Agent represents fatigue life N as a function of cyclic
stress, where the model parameters K and m are internal attributes of this Type

Il agent, and stress amplitude, AS, is the input attribute represented by Type |
Micro-Agent:

N = (AS)'" — Ln(N): K+m- Ln(AS) (1)

* Type lll Monitoring Agents collect information about the status of each part,
component and the system by aggregating information from Type | and Type
Il agents into part level status, then further into component level status and
finally into the status of the system.

Any agent constructed as a combination of two or more Type I Micro-Agents agents of
any category (Groups A and B)

e 10N1MON'NY AveiilsS

1. System-Monitoring Agents

2. Component-Monitoring Agents
3. Part-Monitoring Agents
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Main Properties of Agents

* Learning

e The ability of agent to learn from the new data and previous
experiences.
e Learning Property of Type | and Type Il agents can be formalized by the
means of:
* Bayesian Inference,
* Bayesian Fusion approach (for example, Kalman filter, extended Kalman
filter),
* Machine Learning methods (for example, Gaussian Process Regression
model),
* Time Series and Trend Analysis,
* Bayesian Belief Network (BBN).

e Type lll Monitoring Agents learn and update themselves by aggregating
information from Type | and Type Il agents.

* Autonomy in Action

» Self-activation / deactivation capability is another key property of
autonomous agents providing then an ability of intelligent reasoning
- about their current state and further participation in system evolution.
N ¥
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Main Properties of Agents (Cont.)

* Learning

Difference in learning property of three types of agents using a simple
example of fatigue life Type Il Macro-Agent. Learning property of this agent
was developed by means of Bayesian inference.

I______________II—————_______
Distribution of Stress | Statistical Model of Load Data |
| nplitidassSeldiseire) : | Monitoring Agent: Remaining Cycles to FallureI
(4]
. 'S | Field Use Load Data — Likelihood | Expected Probability
= L (Load Data| 6) || Distributionof | |
g)n g'l Prior Distribution of | T L —_—
< < || Internal Parameters f;,(0) R Ve I |
1
o §| D lLClat s i |
(8]
= = AS = LN (1,0) ) eyt L(DATA|8) £,(8)
E ; !_ U_:L S(@) = flo| pata) [1(paza]e) 1,(0)d0 |
I PoF Model of Life Cycles Statistical Model of I | |
B o = I —— q .
) to Failure: N = K(AS) Time-to-Failure Data Il |
éITestData‘? = l |
© H P = —
oo M= - Collected during Accelerated Life Test [~~_| Likelihood
'E o - Load values were recorded during the L(Time_to_Faﬂure Datal e) |
) ':;; I test for each system
W g
<.t _c.>).| Prior Distributionoef |  IZ---7-~"~-=—-~—~=—— |
g O I Internal Parameters f,(0) |
c @1 6={Km}«k
S 5 { },: L(DATA|6) 1,(6)
I 1) = f(o| DAT4)= I |
mj:L [L(DaTA |60) £, (0)d6
= _ _ _ = _ _ _ I
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Case Study

Reliability Model of Gas Turbine Structures

Objective:
* Develop agent-oriented PoF reliability model for structural components of high pressure
turbine of a turboprop engine: turbine disks, shaft and roller bearings.

Data collection:
* In-test monitoring and inspection

PoF input:
* Wear and fatigue failure mechanism of high-pressure components were considered;

* Interdependency of failure mechanisms acting on several components was identified
(for example, wear and fatigue in the bearings affect progression of fatigue mechanism in the shaft).

* PoF-based relationships developed for the high-pressure turbine bearings from the first
principles and considering bearing functionality under applicable operational stresses.
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Case Study (Cont.)

PoF input:
* PoF equations for roller bearings:

L=BR"(B,R+B;)""

)1—(m/2)

(SpLimit

m =2
B4(BSR+36)’"(1—E)

NB=

2

1

3)

S, = [34 (BsR+Bg)" (1 = %J(M —L)} Hm2) 2 @

Model output:

)

NOMENCLATURE

L = Bearing Life to Spall Initiation

L; = Bearing Life to Spall Initiation (for Bearing 1)

L, =Bearing Life to Spall Initiation (for Bearing 2

Np = Bearing Life to Spall Propagation

Np; = Bearing Life to Spall Propagation (for Bearing 1)
Np, = Bearing Life to Spall Propagation (for Bearing 2
S, = Bearing Spall Size after missions M

Sp1 = Bearing Spall Size after missions M (for Bearing 1)
Sp> = Bearing Spall Size after missions M (for Bearing 2)
Sprimit = Critical Size of a Spall

R = Tangential Force on the Turbine Wheel Disks

M = Accumulated Missions

Bj;) = Parameters of Physical Models. j = 1. .... 6 (six
parameters). / = 1. 2 (two bearings)

k, m = Material Constants

T;7=BOT (Burnet Outlet Temperature) at start

a(R) = probability distribution of R

m(Ty) = probability distribution of Tr

{R;} = Data (measurements) for R

{Trr:} = Data (measurements) for Trr

RUL = Remaining Useful Life of the System

RULg; = Remaining Useful Life of Bearing /. /=1.2

* Remaining Useful Life (RUL) has been chosen to represent reliability of system of
high-pressure turbine components considered in the case study..
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Case Study (Cont.)

Agent hierarchy:

* The agents were assigned to the inputs and outputs of physical model of failure.
Some examples of Type | Micro-Agents and Type Il Macro-Agents

| Type L. Micro-Agents
Public Properties
4; -
Q U= b
(an] ~ — (] + E =
ID = gn gn_%’ 55 G —g &= -§
Agent Name 3 =z E 2= 9 :d: 85
# = Agent Representation 5 E —§_ 82 3 *B=
= = = = S8 E
w (&} (] @ B’ < 5
(04 Q = = 9 s
= 29
1 | Tangential R e Probabilistic* Classical methodsof | Bearing | No Yes
Force on the e Monitored during distribution fitting to
Turbine Wheel operation to obtain | the Data{R;} to
Disks Data {R;} and obtain n(R)
distribution n(R)
2 | BOT atstart T e Probabilistic* Classical methods of | Disk No Yes
e Monitored during distribution ﬁtting to
operation to obtain | the Data {T;r;} to
Data {T;r;} and obtain n(Tir)
distribution n(Tr)
JERSIP 5
S
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Case Study (Cont.)

Public Properti Private Properties
= Equation used | = E < | 3 &

p# | AsentName | & PO fccl)r E— SHe| B Representation of
and Quantity | £ gent Ve 5T =€ Agent PoF Model

5 | Representation Reasoning / 22| meg
. =0 = = = Parameters
Learning = § i -V
Component: Bearings (2)

1 BearingLife | J; | e Probabilistic* | Equation 2 R k ® Probabilistic**

2 to Spall L, | ¢ PoFmodelper | (below) Biiz | ® Prior Distributions
Initiation (2) Equation 2 Bearing Life to B ’ Zor1.24(k By, Bz, Bs)

(below) Spall Initiation 32{1,2) e Estimated from Data
3(1.2) {in, L Ri}

3 BearingLife | J\p; | » Probabilistic* | Equation 4 R m ® Probabilistic**

4 to Spall _ Ng2 | ® POF mf)del per (bEIQW) Sprimit | Ber2) | ® Prior Distribution
Propagation Equation 3 Bearing Spall B Zor.2{m, Bs, Bs, Bs)
to Critical (below) Size Spi1,2 after 5(.2) | o Estimated from Data
Size (2) missions M; Bé(1.2) {M, R, Sy1: Suzi}

D& Agent Name and Letter Xublic Properties MEGHIGEN
Quantity D Gomponent gent ethod of Agent
Representation Learning
1 Remaining Useful Life | RULg; | Bearing(2) Probabilistic* Simulation (Monte Carlo
2 of the Bearing (2) RULg: RULg(12) = or Latin Hypercube)
=L +Nguyn-M
Public Properties
Agent Name Letter | Components Agent . Method Of. Agent
ID Included Representation Learning
\q vRSIp > 3 Remaining Useful Life | RUL Bearings (2) | Probabilistic * Simulation (Monte Carlo
- ~ ) of the System Shaft (1) RUL = Min{RULg;,, or Latin Hypercube)
Q Disks (1) RULs,, RULs, RULy}
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Summary and Conclusions

* Developed an agent classification to allow representation of all levels of
system component/part interactions and degradation.

* Agent representation is based on PoF model of the piece parts,
components and the system according to the first principles of physical
failure mechanisms.

* The agents are defined as intelligent and autonomous entities, due to
their learning ability, reasoning capability and self-activation /
deactivation.

* Several methodologies of probabilistic agent learning were proposed,
including Bayesian inference and Bayesian Fusion (via Kalman filter or
extended Kalman filter).

* Methods such as sensitivity analysis is used to support self-activation /
deactivation property of intelligent agents.

* Agent-oriented PPoF modeling of a complex hardware system was

demonstrated.
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