A Thermodynamic Entropy Based Approach for Fault Detection and Prognostics of Samples Subjected to Corrosion Fatigue Degradation Mechanism

Mohammad Modarres

Presented at ESREL2015, Zurich Switzerland September 8, 2015 Center for Risk and Reliability Department of Mechanical Engineering University of Maryland, College Park, MD 20742, USA

COPYRIGHT © 2015, M. Modarres

Objectives

- Description of degradation mechanisms and resulting damages within the irreversible thermodynamics framework
- Improved understanding of the coupled mechanisms
- Development of an entropic corrosion-fatigue damage model
- Confirmatory testing of the corrosion-fatigue model
- Investigation of applications to structural integrity and reliability assessment
- Search for applications to Prognosis and Health Management (PHM) of structures

Introduction

- The common definitions of damage are based on observable *markers of* damage which vary at different geometries and scales.
 - > At the macroscopic level: Observable markers of damage (e.g. crack size, pit densities, weight loss) vary.

Fatigues markers used: reduction of elasticity modulus, variation of hardness, cumulative number of cycle ratio, reduction of load carrying capacity, crack length and energy dissipation

[1] J. Lemaitre, "A Course on Damage Mechanics", Springer, France, 1996.

Entropy and Damage

- Entropy provides a unified and broad measure of damage in terms of energy dissipations of multiple irreversible degradation processes
- Entropy enables us to model multiple competing degradation processes contributing to damage
- Entropy is independent of the path to failure for a system ending at similar total entropy at the time of failure
- Entropy accounts for synergistic effects arising from interactions between multiple degradation processes
- Entropy applies to all scales

Damage and Entropy

Damage \equiv Entropy

• An entropic theory follows:

Failure occurs when the total entropy exceeds the entropic-endurance of the system

- Entropic-Endurance is the capacity of the system to withstand entropy
- Entropic-Endurance of the same systems are equal
- Entropic-Endurance of different systems are different
- Entropic-Endurance is measurable and involves stochastic uncertainties

Total Entropy Generated

• The variation of *total entropy*, *dS*, is in the form of:

 $dS = d \uparrow r S + d \uparrow d S$

 $d\uparrow r S$ = exchange part of the entropy supplied to the system by its surroundings through transfer of matters and heat:

 $d \uparrow r S/dt = -\int \uparrow \Omega$ $J \downarrow s A$

 $d\uparrow dS =$ dissipative part of the entropy produced inside of the system: $dS = d\uparrow rS + d\uparrow dS$

 $d \uparrow d S/dt = \int \uparrow V \# \sigma dV$

- Divergence theorem leads to: $\rho ds/dt + \nabla J ls = \sigma$, where, *S* is the specific entropy per unit mass.
- The evolution trend of the damage, *D*, according to our theory is dominated by the entropy generated:

 $D|t \sim \int 0 \uparrow t \equiv [\sigma|X \downarrow i(u), J \downarrow i(u)] du$ J=entropy flux, σ =entropy generation/unit volume/unit time

 $d \uparrow r S$

Surroundings

System

 $d \uparrow d S$

> 0

Ω

 $\sigma > 0$

V

Total Entropy Generated (Cont.)

• Entropy generation σ involves a thermodynamic force, $X \downarrow j$, and an entropy flux, $J \downarrow i$ as:

$$\sigma = \Sigma \downarrow i, j X \downarrow i J \downarrow i (X \downarrow j); \quad (i, j=1, ..., n)$$

Note that when synergy between multiple dissipation / damage processes exist Onsagar reciprocal relations define forces and fluxes. For example for Fatigue (f) and Corrosion (c)

 $J \downarrow c = L \downarrow cc X \downarrow c + L \downarrow f c X \downarrow f \qquad \text{and} \qquad J \downarrow f = L \downarrow f c X \downarrow c + L \downarrow f f X \downarrow f$

• The entropy generation due to important dissipation phenomena: Heat energy Diffusion energy Plastic deformation energy

 $\sigma = 1/T \uparrow 2 \mathbf{J} \mathbf{J} q \cdot \nabla T - \mathcal{L} \mathbf{k} = 1 \uparrow \mathbf{n} \text{ Chemical reaction energy External fields energy } / T$ $\mathcal{L} \mathbf{j} = 1 \uparrow \mathbf{r} \ v \mathbf{j} \ A \mathbf{j} + 1/T \ \mathcal{L} \mathbf{j} = 1 \uparrow \mathbf{h} \ c \mathbf{j} \mathbf{m} \mathbf{J} \mathbf{m} (-\nabla \psi)$

 $\int \ln (n = q, k, and m)$ = thermodynamic fluxes due to heat conduction, diffusion and external fields, T = temperature, $\mu \downarrow k$ = chemical potential, $\nu \downarrow i$ = chemical reaction rate, τ = strengthermodynamic, $\tau = strengthermodynamic, fields, T = temperature, <math>\mu \downarrow k$ = chemical affinity, ψ = potential of the external field, $\frac{1}{2}$ and $\frac{1}{2}$ = chemical affinity, ψ = potential of the external field, $\frac{1}{2}$ = chemical affinity, ψ = potential of the external field, $\frac{1}{2}$ = chemical affinity, ψ = potential of the external field, $\frac{1}{2}$ = coupling constant [1, 2].

[1] D. Kondepudi and I. Prigogine, "Modern Thermodynamics: From Heat Engines to Dissipative Structures," Wiley, England, 1998.

Entropy Generation in CF

• Contribution from corrosion activation over-potential, diffusion over-potential, corrosion reaction chemical potential, plastic and elastic deformation and hydrogen embrittlement to the rate of entropy generation [1]:

Electrochemical	
$\bigcup_{J \neq M} dissipations \qquad (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, a + J \downarrow M, c \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \downarrow a ct, c - I \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M \ (J \neq M, a \ z \downarrow M \ F E \downarrow M \ (J \neq M, a \ z \downarrow M $	+ J \$0,a
$z\downarrow 0 FE\downarrow 0\downarrow act, a + J\downarrow 0, c z\downarrow 0 FE\downarrow 0\downarrow act, c) Difference dissinct the set of the s$	usion
$+1/T (J \downarrow M, c z \downarrow M FE \downarrow M \downarrow conc, c + z \downarrow O F J \downarrow O, c E \downarrow O \downarrow conc, c)$)
+1/T ($\mathbf{J} \mathcal{M} \alpha \alpha \mathcal{M} A \mathcal{M} + \mathcal{J} \mathcal{M}, c (1 - \alpha \mathcal{M}) A \mathcal{M} + \mathbf{J} \mathcal{J} O, a u$	Chemical reaction
JJM,a(1) dissipations	dissipations
$+1/T \epsilon \downarrow p: \tau \prec$ Hydrogen embrittlement dissipation	
$+\sigma \downarrow H$	

T = temperature, $Z \downarrow M =$ number of moles of electrons exchanged in the oxidation process, F = Farady number, $\prod_{e \in SI_{T_{e}}} A$ and $J \downarrow M, C =$ irreversible anodic and cathodic activation currents for oxidation reaction, $J \downarrow O, a$ and $J \downarrow O$ and $I \downarrow O$ an

CF Simplifying Assumptions

- Entropy flow due to heat exchange is negligible 1
- 2. Diffusion losses are eliminated assuming well mixed solution
- 3 Effect of diffusivity and concentration of hydrogen at the crack surface excluded for Aluminum alloys under cyclic loading in the sodium chloride solution (Mason confirms that in fatigue loading > 0.001 Hz less time for diffusion and accumulated hydrogen exists)
- The Ohmic over-potential effect was minimal by placement of the Luggin 4. capillary close to the working electrode
- 5 Activation over-potential has been considered to be result of Mechano-chemical effect.

 $\sigma = 1/T (I \downarrow M, \alpha \alpha \downarrow M A \downarrow M + I \downarrow M, c (1 - \alpha \downarrow M) A$ $\int M + J \downarrow O, \alpha \alpha \downarrow O A \downarrow O + J \downarrow O, c (1 - \alpha \downarrow O) A \downarrow O)$ Corrosion current-potential hysteresis

Corrosion current-potential hysteresis

where, $A = \sum i \nu i \mu i$ is mechano-chemical affinity induced by mechanochemical potential $\mu \downarrow i = \mu \downarrow i + z \downarrow i F(E - E \downarrow corr)$.

 $+(1/T \epsilon \downarrow p: \tau+1/T YD)$

Corrosion Fatigue Experimental Set up

- Fatigue tests of Al 7075-T651 are performed in 3.5% wt. NaCl aqueous solution acidified with a 1 molar solution of HCl, with the pH of about 3.5, under axial load controlled and free corrosion potential
- Specimen electrochemically monitored via Gamry potentiostat using Ag/AgCl reference electrode maintained at a constant distance (2 mm) from the specimen, a platinum counter electrode, and the specimen as the working electrode
- Stress von Mises (WCS) [MPa] Loadset LoadSet1 : AL7075-ULTINATE2M
- Digital image correlation (DIC) technique used to measure strain

Entropy Generation in CF

• Total entropy is measured from the hysteresis loops resulted from fatigue (stress-strain) and corrosion (potential-electrical) in each loading cycle

Entropy to Failure

- Similarity of the total entropy at the time of failure supports the proposition of the entropic theory of damage offered in this research
- More tests needed to reduce the epistemic uncertainties and further confirm the theory

Interplay of corrosion and fatigue entropy

- Reducing maximum stress allows more time for corrosion thus increasing contribution of corrosion to total entropy
- See ratio of entropy from corrosion to the total entropy versus ratio of entropy from fatigue to the total entropy

COPYRIGHT © 2015, M. Modarres

Using Entropy for Reliability Analysis

• A dimensionless damage index can be defined as:

 $D = \gamma \downarrow d - \gamma \downarrow d \downarrow 0 / \gamma \downarrow d \downarrow E - \gamma \downarrow d \downarrow 0$

where $\gamma \downarrow d$ is the volumetric dissipative entropy $\gamma \downarrow d \downarrow 0$ is the initial entropy and $\gamma \downarrow d \downarrow E$ in an entropic-endurance value

 Material, environmental, operational and other types of variability in degradation impose uncertainties on the total entropy/ cumulative damage, *D*

 $R(t) = \int T \downarrow_{\mathcal{C}} \uparrow \infty = g(t) dt = 1 \int D \downarrow_{\mathcal{F}} \uparrow \infty = f(D|t) dD$

Time

t

14

, the reliability function

g(t)=Time to failure distribution

f(D|t)=Normalized entropy to failure distribution

Entropic-Based Reliability Assessment

Application of the Entropic PHM Framework

• Proposed PHM framework has been used to predict the RUL of Al samples.

An Example of RUL Prediction

- *kNN* is a non-parametric classification method
- Fault level (FL) determined from the output of the *kNN* classification
- An anomaly was acknowledged from FL

Conclusions

- A thermodynamic theory of damage proposed and tested
- Applications to reliability and structural integrity assessments explored
- The proposed theory offered a consistent and science-based model of damage and allowed for the incorporation of all underlying dissipative processes
- Entropy generation function derived and evaluated for corrosion-fatigue degradation mechanism in terms of leading dissipative processes
- Entropic corrosion-fatigue degradation model experimentally studied and supported the proposed theory
- Proposed a PHM framework based on entropic damage NERS

Thank you

The team contributed to research:

- 1. Ms. Anahita Imanian (PhD Candidate)
- 2. Dr. Mehdi Amiri (Postdoc)
- 3. Mr. M. Nuhi-Faridani (Experimental support/technician)
- 4. Dr. Mohammad Modarres (Principal Investigastor)

Funding and oversight:

Office of Naval Research

