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Motivation
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Motivation
• Apply PHM to corrosion, the most prominent failure mechanisms in pipelines

• Only 1 % improvement in performance of systems saves billions

• Managing corrosion damage in oil and gas industry improves performance 
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From:  DOI 10.1007/978-3-319-44742-1

What is the most efficient approach to 
manage pipelines corrosion failures?



Motivation
• Significant progress in data analytics, machine learning and 

PHM 
• Survey of key industries on relevance of data analytics :

• How important is data analytics, machine learning relative to other 
priorities in your industry?

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019

24%

40%

42%

31%

61%

45%

55%

47%

45%

56%

29%

45%

21%

13%

13%

13%

10%

10%

MINING

RAIL

MANUFACTURING

OIL & GAS

AVIATION

WIND

top/highest priority within top three priorities not the top three priorities

[2] GE/ Accenture (2015)



AI, Machine Learning, Deep Learning

From: https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55 

symbolic vs. connectionist approaches to AI



Data Analytics and Machine Learning in 
Pipeline Integrity Management

• Prognosis and health management (PHM) is the field where data 
analytics is applied 
– Cost effective and conditioned based pipeline integrity management 

• What is PHM?

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019

[From:DOI 10.1007/978-3-319-44742-1



Data Analytics and Machine Learning in 
Pipeline Integrity Management

• PHM categories
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Problem 
Definition
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Problem Definition

• Available data for a corroded pipeline: 
– Noisy and expensive offline large scale data/information
– Corrosion growth physics of failure (PoF) information
– Accurate and inexpensive online local data

• Objective:
– Develop a cost-effective health monitoring approach for high-

confidence damage size estimation
– Develop a hybrid corrosion growth model for high-confidence 

RUL estimation

Large scale
data/Information

Local
data/Information
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Developed 
Approach
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Overall View

The approach involves two levels: 

• Local level: an optimal arrangement of sensors and inspection 

areas was mathematically investigated:

– Minimizing health monitoring cost 

– Maximizing probability of detection of corrosion damages

• Large scale level: data and information gathered through different 

techniques were fused to:

– Developed and updated a hybrid corrosion growth model including 

measurement uncertainties to estimate RUL
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: Estimated corrosion damage size based on human inspection
S: Sensor, H: Human Inspection, I: ILI, F: final, PF: particle filtering 
HE

Overall View
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Detailed View – Local Level



ILI  data PoF model Sensor  data

Fusing ILI, sensor data and PoF information 
to estimate a high-confidence RUL for all 
corrosion damages.

[iectech.org]
[Nuhi et al., 2011]
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Detailed View – Large Scale Level
The picture can't be displayed.

•Nuhi, M., Seer, T. A., Al Tamimi, A. M., Modarres, M., & Seibi, A. (2011). Reliability analysis for degradation effects of pitting corrosion in 
carbon steel pipes. Procedia Engineering, 10, 1930–1935.
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RUL estimation for all corrosion 
damages

Local level remaining useful life curve

PWT: Pipe wall thickness
!": Current time, !$: Failure time



Examples of Results
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Results-Local Level
• 46 synthetic realizations of pitting corrosion damages over a pipeline

segment were considered
• Corresponding optimal arrangements were aggregated

• Acoustic Emission Sensors (Triangle sign)
• Human Inspection With Ultrasound tool (plus sign)

• The final result considers 95% of spatial and size variations of corrosion
damages over the pipeline segment
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Results- Local Level
• Automated crack length estimation using CNNs

- Images correspond to experiments conducted at Center for 
Risk and Reliability.
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Original Original CNN prediction CNN prediction 

200 µm 200 µm



Results- Local Level

• Online crack growth (length) estimation using RNNs inferred 
from acoustic emission signals
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Results- Local Level

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019

Estimation of pitting corrosion growth model parameters by augmented particle filtering

! = pit depth
" : operation time
"# : Operation initiation time
$ & & : growth model parameters

PoF - based pitting corrosion growth model
[Nuhi et al,  2011]

•Nuhi, M., Seer, T. A., Al Tamimi, A. M., Modarres, M., & Seibi, A. (2011). Reliability analysis for degradation effects of pitting corrosion in 
carbon steel pipes. Procedia Engineering, 10, 1930–1935.



Results- Large Scale Level
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An example of the estimated depth 



Results- Large Scale Level
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Comparison between our results and the results of Maes model**:

Performance metric Developed approach Maes model**
RMSE 0.334 0.556

Metric N* 24.5% 60.55%

*Metric N: percentage of pits that their predicted depth is out of ±10% bounds of their actual depth.
** Maes model: State of the art pitting corrosion growth model for in-line inspected pits available in 

the literature which is validated by field data.



Summary
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Summary
• A new machine learning based approach for RUL estimation of corroded 

pipelines is developed
• This approach considers local and large scale data/information for a high 

confidence RUL estimation
– Local data are gathered using an optimal arrangement of sensors and 

inspection areas
– Large scale data are gathered using in-line inspection
– Local data are used to mitigate the uncertainties regarding large scale data
– A fusion of local and large scale data are used to update physics of failure 

model parameters
• Future works: 

– Dynamic sensor placement based on data fusion results
– Finding an optimal maintenance policy including optimal maintenance actions 

and schedule for each pipeline segment
– Optimal next ILI time
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Questions?

Thank you
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AI in History



Case study:

Assumptions and Pipeline Specifications
• A short pipeline segment is considered to illustrate the proposed 

approach
• Length=50 m, Radius=1 m 

• Internal pitting corrosion 
– Pit depth as the damage size

• Generated 46  synthetic samples 

• Models from the literature are used for pitting damage density and size 
distributions
– Longitudinal pitting  density: 0.2 pit/meter

• Detection methods: Acoustic emission sensors  & Human inspection with 
ultrasonic tools



Case study:

Layout for one Pitting Corrosion Sample

1

2

1: without clustering, 2: with clustering

• 142 continues variables, 198 binary variables



CNN

https://www.jeremyjordan.me/semantic-segmentation/

• Semantic Image Segmentation

• CNN for corrosion detection

Corrosion

Non-Corrosion

https://www.jeremyjordan.me/semantic-segmentation/
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RNN

Multi-layer
RNN



Particle Filtering
• Particle Filtering is a sequential Monte Carlo

methods for on-line learning within a
Bayesian framework.

• The key idea in PF is to approximate the
posterior density function of the state of the
system with a discrete weighted distribution
of some random samples (i.e., particles)
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Particle Filtering

Measurement Model: !" = ℎ %",'" → )(!"|%")

Where !" is state at time step j, '" is called measurement noise and ℎ is the evolution 
function.

Process Model: %" = - ."/0, 1"/0 → )(%"|%"/0)

Where %" is state at time step j, V is called
process noise and - is the evolution function.

In order to perform PF, P number of samples or particles are generated from initial pdf of
the state of the system and then at each time step, those particles are evolved by using
the process model (prediction step). Subsequently, the measurements corresponding to
that time step will be used to update the assigned weight to each particle (updating step)

In the standard PF, it is assumed that the parameters of the process model are known. However, for
most of the practical cases, those parameters are unknown, but the form of the process model is
known based on the physics of the process. In that case, augmented particle filtering (APF) can be
used to estimate the state of the system and the process model parameters.



Hierarchical Bayesian

Another method that is a used in this approach is a hierarchical Bayesian (HB) method based on a
non-homogeneous gamma process. HB modeling is an appropriate method to make scientific
inference about a population, based on many individuals. This method has been used to fuse ILI
data of various pits along the pipeline.


