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Motivation

* Apply PHM to corrosion, the most prominent failure mechanisms in pipelines
* Only 1% improvement in performance of systems saves billions

Savings in SB
0 20 40 60 80 100
Oil & Gas Increasing availability and productivity
Power Equipment Monitoring
Healthcare Workers technical training

From: DOI 10.1007/978-3-319-44742-1

* Managing corrosion damage in oil and gas industry improves performance

What is the most efficient approach to
manage pipelines corrosion failures?

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019



Motivation

* Significant progress in data analytics, machine learning and
PHM

» Survey of key industries on relevance of data analytics :

* How important is data analytics, machine learning relative to other
priorities in your industry?

top/highest priority within top three priorities notthe top three priorities
WIND 45% 45% 10%
AVIATION 61% 29% 10%
MANUFACTURING 42% 45% 13%
RAIL 40% 47% 13%
MINING 24% 55% 21%

[2] GE/ Accenture (2015)

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Al, Machine Learning, Deep Learning "

ARTIFICIAL INTELLIGENCE symbolic vs. connectionist approaches to Al

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data
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Amount of data

From: https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4dedc27b55



Data Analytics and Machine Learning in
Pipeline Integrity Management

* Prognosis and health management (PHM) is the field where data
analytics is applied
— Cost effective and conditioned based pipeline integrity management

e Whatis PHM?

Data : : : Health
acquisition Diagnostics Prognostics management
Collect condition What is the fault What is the Optimal
monitoring data & and how severe remaining useful management on
extract features is it? life? maintenance and
logistics

[From:DOI 10.1007/978-3-319-44742-1

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Data Analytics and Machine Learning in ‘1;@
Pipeline Integrity Management

. Data-driven models
* PHM categories Physics of Failure-based models (PoF)

Hybrid models l
Condition Data

o : Data-Driven ML

Experimental Model
and Book Selection &
Knowledge Averaging

D dation | |
- a-| i Hybrid Model of the System =
progression |

RUL

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019



Problem
Definition
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Problem Definition

* Available data for a corroded pipeline:
— Noisy and expensive offline large scale data/information
— Corrosion growth physics of failure (PoF) information
— Accurate and inexpensive online local data

Local
data/Information

itoring approach for high-

o gy idence

-
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Developed
Approach
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Overall View

N Local
data/Information

| Largescale
data/Information

The approach involves two levels:

e r—

* Local level: an optimal arrangement of sensors and inspection
areas was mathematically investigated:
— Minimizing health monitoring cost
— Maximizing probability of detection of corrosion damages

e Large scale level: data and information gathered through different
techniques were fused to:

— Developed and updated a hybrid corrosion growth model including
measurement uncertainties to estimate RUL

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019



Overall View

Recurrent Local
Sensor Network >
Neural Net S
Recurrent E
: Convolutional Neural Net 1
Human Inspection >
Neural Net H

Large scale

Hierarchical E
Bayesian I \
Augmented ‘E Rl ll
F

Particle FiItering'
Augmented E

Particle Filtering

EH : Estimated corrosion damage size based on human inspection
S: Sensor, H: Human Inspection, I: ILI, F: final, PF: particle filtering

All rights reserved. 2019
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Detailed View — Local Level
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Detailed View — Large Scale Level

PoF model Sensor data

Pitdepth vy, Thme (Stressed)
RIS [5] The picture can't be displayed.

Pit depth [um]

[Nuhi et al., 2011] Time ()

Time to failure distribution

Pit depth
OBPWT S
Fusing ILI, sensor data and PoF information
to estimate a high-confidence RUL for all |
. <—Pit depth distribution !
corrosion damages. ' |
% i ' 5
Pit initiation time te Life (Years)
\ )
I
RUL

*Nuhi, M., Seer, T. A., Al Tamimi, A. M., Modarres, M., & Seibi, A. (2011). Reliability analysis for degradation effects of pitting corrosion in
carbon steel pipes. Procedia Engineering, 10, 1930-1935.

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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RUL estimation for all corrosion &
damages

Local level remaining useful life curve

Time (years)

4
23 Pit depth Time to failure distribution
A
B L O = (... Sy
~ f «——Pit depth distribution
L ‘ . "
Pit initiation time ic f Life (Years)
|
RUL

PWT: Pipe wall thickness
tc: Current time, ty: Failure time

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Examples of Results
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Results-Local Level

* 46 synthetic realizations of pitting corrosion damages over a pipeline
segment were considered
* Corresponding optimal arrangements were aggregated

e Acoustic Emission Sensors (Triangle sign)
 Human Inspection With Ultrasound tool (plus sign)

* The final Tésultp c%\s'&lmsg of corrosion
damages c} the pibeline segfefr

Ea a
6
: . A
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A
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1 AN A
0

0 10 20 30 40 50
x(m)

A AE sensor HI with Ultrasonic

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Results- Local Level

* Automated crack length estimation using CNNs
- Images correspond to experiments conducted at Center for
Risk and Reliability.

Original CNN prediction Original CNN prediction

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019



Results- Local Level

* Online crack growth (length) estimation using RNNs inferred
from acoustic emission signals

16 1
14 1
12 4
10 4
08 1
06 -
04 1

Actual Length (mm)

02 1

0.0 1 ¢
215 -10 -05 00 05 10 15 20
Predicted Length (mm)

*Red line: Identity line of actual length

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Estimation of pitting corrosion growth model parameters by augmented particle filtering

vl
1
Vo sy _
M T e v i e e e e

0.6 W PoF - based pitting corrosion growth model
i [Nuhi et al, 2011]

0.61

d = /\(f - I‘O)V
d = pit depth
t : operation time
to : Operation initiation time
k & v : growth model parameters

0.4]

0.2

Estimated model parameters

1 et - = 95% Highest posterior density of 1/
024 i —k
1 - = 95% Highest posterior density of k
3 3 40 45
t (Year)

*Nuhi, M., Seer, T. A., Al Tamimi, A. M., Modarres, M., & Seibi, A. (2011). Reliability analysis for degradation effects of pitting corrosion in
carbon steel pipes. Procedia Engineering, 10, 1930-1935.

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Results- Large Scale Level x®
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An example of the estimated depth
Estimated depth of pit No.42

— Actual pit depth
- e |Ll data
1 — Mean estimated depth
1 -- Lower/upper bounds of the estimated depth
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Comparison between our results and the results of Maes model**:

RMSE 0.334 0.556
Metric N* 24.5% 60.55%

*Metric N: percentage of pits that their predicted depth is out of £10% bounds of their actual depth.
** Maes model: State of the art pitting corrosion growth model for in-line inspected pits available in
the literature which is validated by field data.

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Summary
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Summary

* A new machine learning based approach for RUL estimation of corroded
pipelines is developed

* This approach considers local and large scale data/information for a high
confidence RUL estimation

— Local data are gathered using an optimal arrangement of sensors and
inspection areas

— Large scale data are gathered using in-line inspection
— Local data are used to mitigate the uncertainties regarding large scale data

— A fusion of local and large scale data are used to update physics of failure
model parameters

e Future works:
— Dynamic sensor placement based on data fusion results

— Finding an optimal maintenance policy including optimal maintenance actions
and schedule for each pipeline segment

— Optimal next ILI time

Center for Risk and Reliability, University of Maryland, USA All rights reserved. 2019
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Questions?
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Ratio connectionist / symbolic (log)
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Case study:
Assumptions and Pipeline Specifications

A short pipeline segment is considered to illustrate the proposed
approach

* Length=50 m, Radius=1 m

Internal pitting corrosion
— Pit depth as the damage size

Generated 46 synthetic samples

Models from the literature are used for pitting damage density and size
distributions

— Longitudinal pitting density: 0.2 pit/meter

Detection methods: Acoustic emission sensors & Human inspection with
ultrasonic tools
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Case study:
Layout for one Pitting Corrosion Sample

e 142 continues variables, 198 binary variables
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1: without clustering, 2: with clustering
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e CNN for corrosion detection

| (0. ~Lorrosion
= “. O ™~ Non-Corrosion
_ O
I Convolution Layer - Convolution + Max Pooling I Multiple Convolution Layers I Fully Connected Layer

* Semantic Image Segmentation

Design a network as a bunch of convolutional layers

to make predictions for pixels all at once! pixel-wise softmax activation
/‘ e
= Conv Conv Conv Conv argmax
— — — > >
\ Y / Scores: Predictions:
i CxHxW HxW
Convolutions: 5
DxHxW

feature extraction
final output retains original image dimensions

https://www.jeremyjordan.me/semantic-segmentation/
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Particle Filtering

e Particle Filtering is a sequential Monte Carlo
methods for on-line learning within a
Bayesian framework.

e The key idea in PF is to approximate the
posterior density function of the state of the
system with a discrete weighted distribution
of some random samples (i.e., particles)

1T

=

-]

P
P!’({fj"‘,‘];j) . Z ll'?ri(dj == (ff]
p=1

bE

d; = actual state of the system at time step j
Y1:j = noisy measurments from time step 0 to j

ij = updated weight of p" particle at time step j

6 = Dirac’s delta function
P = number of particles

)
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Particle Filtering

In order to perform PF, P number of samples or particles are generated from initial pdf of
the state of the system and then at each time step, those particles are evolved by using
the process model (prediction step). Subsequently, the measurements corresponding to
that time step will be used to update the assigned weight to each particle (updating step)

Process Model: d; = f(Dj_l,Vj_l) - P(d;|ld;j-1)

Where d; is state at time step j, Vis called
process noise and f is the evolution function.

Measurement Model: y; = h(d;, W;) > P(y;|d;)

Where y; is state at time step j, W; is called measurement noise and h is the evolution
function.

In the standard PF, it is assumed that the parameters of the process model are known. However, for
most of the practical cases, those parameters are unknown, but the form of the process model is
known based on the physics of the process. In that case, augmented particle filtering (APF) can be

used to estimate the state of the system and the process model parameters.
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Another method that is a used in this approach is a hierarchical Bayesian (HB) method based on a
non-homogeneous gamma process. HB modeling is an appropriate method to make scientific

inference about a population, based on many individuals. This method has been used to fuse ILI
data of various pits along the pipeline.



