Reliability Engineering: A Brief Overview

Mohammad Modarres

The Center for Risk and Reliability
Reliability Engineering Overview

• Reliability engineering measures and improves resistance to failure over time, estimates expended life, and predicts time-to-failure

• What reliability engineers do?
 – Study ways to prevent failures
 • Robust Design
 • Monitor and correct degradation and damage
 – Develop and use models to assess damage, degradation, and aging
 – Predict the time-of-failure (e.g., MTTF, MTBF)
 – Assess complex system reliability
 – Develop prognosis and health assessment (PHM) methods
Evolution of Reliability Engineering

• Two Overlapping Themes for Modeling Life and Performance of Items Have Emerged:

 1. Data / Evidence Driven View:
 • Statistical
 • Probabilistic

 2. Physics Driven View:
 • Empirical: Physics of Failure
 • Physical Laws

• Examples of Areas of Applications
 – Operation (Repair, Maintenance, Risks, Obsolescence, Root Cause Evaluations)
1. Data View: Post WWII Initiatives due to unreliability of electronics and fatigue issues--asserts that historical failure data or reliability test data represent the truth
 - Predicted reliability from historical data exists as the likelihood of no failure
 \[R(t; \theta) = \Pr(Time - to - failure \geq desired\ life\ time) \]
 - Reliability of systems composed of multiple items: \(R_{sys} = g(R_i); i = 1, \ldots, N \)
 - Logical connections of the components (fault trees, etc.)
 - Reliability block diagrams
 - Common Assumptions
 - Maintenance and repair contribute to the renewal
 - Degradation can be measured by the hazard rate.

2. Physics View: Failures occur due to known underlying failure mechanisms:
 - Accumulate damage until exceeds endurance (i.e., resistance to damage)
 - Performance decline which until a minimum requirement reached
 - Applied stresses (load) exceeds strength (capacity) to resist the applied stress
Thank you for your attention!